III КОНФЕРЕНЦИЯ FPGA РАЗРАБОТЧИКОВ

FPGA-Systems 2021.2

Доступно в записи на Youtube

Конференция в Москве

Конференция в Санкт-Петербурге

Приходи на следующую конференцию

fpga-systems.ru/meet

Поддержи мероприятие

Способ 1

Способ 2

FPGA-Systems 2021.2

ALDEC: Программная и аппаратная верификация ПЛИС по стандарту КТ-254

Александр Акулин Технический директор компании PCB SOFT Официальный дистрибьютор ALDEC, Cadence, Downstream akulin@pcbsoftware.com

Что такое стандарт КТ-254 и DO-254

- KT-254 это руководство по гарантии конструирования бортовой электронной аппаратуры
- Российский стандарт КТ-254 основан на зарубежном аналоге под названием DO-254

Что такое верификация (по КТ-254)

- Назначение: подтвердить, что реализация оборудования соответствует поставленным требованиям
- Включает в себя: рассмотрение проекта, анализ, испытания
- Анализ можно выполнить с помощью моделирования, но испытания должны быть проведены как функциональный тест

реального оборудования

Назначение продуктов ALDEC для верификации

- Обеспечить эффективную и удобную верификацию выполнения требований путем аппаратного тестирования
- Увеличить покрытие верификации
- Предоставить адаптированное программно-аппаратное решение для тестирования ПЛИС на рабочей скорости
- Предоставить единую автоматизированную среду для верификации всех требований на уровне ПЛИС
- Сократить цикл верификации

Состав комплекса ALDEC DO-254/CTS для программно-аппаратного тестирования

 Программное обеспечение DO-254 CTS CVT Конвертирует тестовые вектора Управляет процессом тестирования

• Материнская плата DO-254 COTS

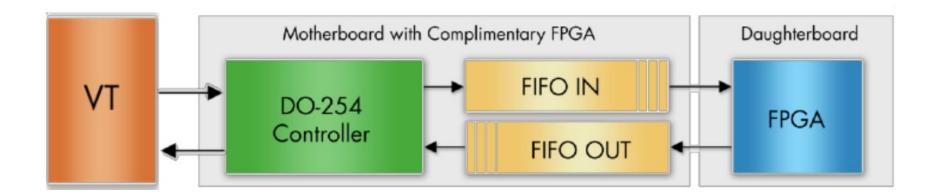
 Дочерняя плата с целевой ПЛИС

Материнская плата DO-254 COTS

- Передает тестовые вектора в ПЛИС «на скорости»
- Принимает отклики ПЛИС «на скорости»
- Интерфейс PCI/е и память DDRII 4 Гбайт

Дочерняя плата (кастомизированная под проект)

- Содержит «целевую» ПЛИС с «целевой» прошивкой
- Адаптирована под задачи конкретного проекта или группы проектов

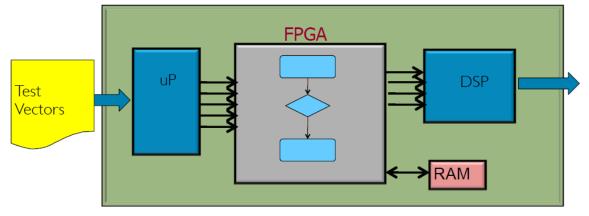


Принцип тестирования

Процесс тестирования


 VT – Verification Tool программирует целевую ПЛИС, считывает входные вектора, управляет тестированием, генерирует выходные вектора

Анализ результатов тестирования


- Система показывает места несовпадений выходных векторов с «золотыми» векторами, полученными при моделировании
- Результат можно визуализировать в виде диаграмм

Преимущества по сравнению со способом тестирования «в составе изделия»

- При обычном подходе к тестированию ПЛИС в составе изделия:
 - Через ПЛИС проходят только реальные данные
 - Выходы ПЛИС подсоединены к другим устройствам на плате
 - Нет «пробников» на каждом входе/выходе ПЛИС

Board Under Test

Недостатки теста «в составе изделия»

- Трудно убедиться, что результаты моделирования и физического тестирования совпали
- Трудно разработать входные данные для тестирования выполнения всех требований
- Ограниченные возможности контроля входов/выходов
- Покрытие тестами в большинстве случаев недостижимо
- Сложно документировать результаты тестирования
- Сложно автоматизировать тестовую среду для реализации большого количества тестовых кейсов

Преимущества теста с ALDEC DO-254/CTS

- Верификация «целевой» ПЛИС на полной скорости
- Повторное использование Testbench как тестовых векторов
- Повторное использование тестовых кейсов
- Тестирование на основе требований
- Не требуется изменять проект или Testbench
- Проверка ПЛИС не требует отладки целевой печатной платы
- Упрощена проверка надежности функционирования проекта ПЛИС. Можно создать такие входные воздействия и отклонения, которые трудно искусственно воссоздать на целевой плате
- Упрощено считывание результатов, анализ и документирование

Проверка надежности с ALDEC DO-254/CTS

- Для уровней гарантии аппаратуры A и B по стандарту КТ-254 требуется проверка надежности проекта ПЛИС
- В реальной целевой плате трудно создать такие тесты:
 - Неверные комбинации сигналов или прерывание потока данных
 - Выход сигнала синхронизации за пределы допуска
 - Управление частотой сигнала
 - Вставка лишнего импульса синхронизации
 - Варьирование граничных условий по времени Setup/Hold
 - Проверка защелкивания значений данных в регистр
 - Пересечение доменов синхронизации
 - Варьирование уровня напряжений сигнала на входах ПЛИС

Примеры реальных проектов дочерних плат 1

- Целевая ПЛИС Microsemi ProASIC A3P1000-FG484-2
- Тактовая частота: 66 МГц
- Количество входов/выходов: 62
- Время верификации: 50 мс
- Верификация целевой ПЛИС «на полной скорости» Использование тестовых векторов RTL Результаты тестирования сохранены и задокументированы для отчетности по стандарту DO-254

Примеры реальных проектов дочерних плат 2

- Целевая ПЛИС Altera Cyclone III EP3C40F780C8
- Тактовая частота: три клока @65MHz, @13MHz, @66MHz
- PLL для управления клоками
- Количество входов/выходов: 370, включая LVDS и SERDES
- Время верификации: 300 мс
- Нюанс тестирования варьирование напряжений +-10%
- Верификация целевой ПЛИС «на полной скорости» Использование тестовых векторов RTL Результаты тестирования сохранены и задокументированы для отчетности по стандарту DO-254

Примеры реальных проектов дочерних плат 3

- Целевая ПЛИС Xilinx SPARTAN 3A XC3S700A-FG400I
- Тактовая частота: 2 клока @48 MHz, @40MHz
- DCM (Digital Clock Manager) для управления клоками
- Количество входов/выходов: 212
- Время верификации: 200 мс
- Нюанс незадействованные входы/выходы и клоки, тем не менее, добавлены в проект дочерней платы «на будущее»
- Верификация целевой ПЛИС «на полной скорости» Использование тестовых векторов RTL Результаты тестирования сохранены и задокументированы для отчетности по стандарту DO-254

Пример информационного листа для заказа дочерней платы

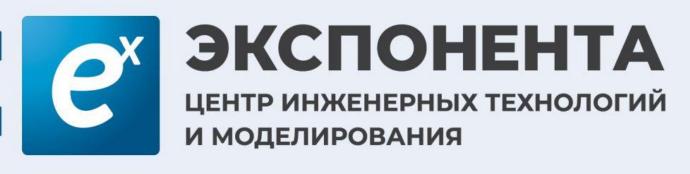
DO-254/C	ТЅ Инфор	мацио	нный л	ист описа	ния входов	в/выход	ов ПЛИ	C
Инструкция: Заполните нижеследующу	∣ /ю информацию. На осн	 ове этой инфор	мации будет вы	олнена кастомизация <i>,</i>	 цочерней платы DO-254/CT	S, программного с	рбеспечения матер	инской платы,
диагностических проектов и руководств	а пользователя.			·				
Компания:								
Проект:								
Дата:								
Планируемая дата поставки DO-254/	CTS:							
Имя сигнала	Тип сигнала (отметьте CLK для сигналов синхронизации)	Режим (IN, OUT, INOUT)		Имя сигнала синхронизации, который тактирует данный сигнал (впишите ASYNC для асинхронных сигналов)	Частота тактирования (не заполнять для асинхронных сигналов)	Номер вывода в целевой ПЛИС	Используемое Vi/o (например, LVCMOS33)	Резистор Pullup/Pulldown для размещения на дочерней плате (оставьте пустым, если не нужен)

Оценка и квалификация инструментов ALDEC

- Ошибка в инструменте конструирования может вызвать ошибку в элементе аппаратуры
- Ошибка в инструменте верификации может привести к пропуску ошибки в элементе аппаратуры
- Прежде чем использовать инструмент, необходимо выполнить его оценку.
- Результаты этой оценки и, если необходимо, квалификация инструмента, должны быть документированы.
- В маршруте, предложенном ALDEC, инструменты конструирования (симулятор Active-HDL и средство проверки RTL-кода ALINT-PRO) разнесены со средствами верификации (система DO-254/CTS)

Ответы на вопросы

Александр Акулин
Технический директор компании PCB SOFT
Официальный дистрибьютор ALDEC, Cadence, Downstream
akulin@pcbsoftware.com



DISCOVER. DESIGN. DEVELOP.

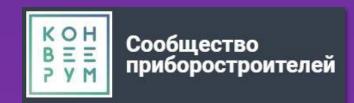
yadro.com

Генеральный партнер конференции FPGA-Systems 2021.2

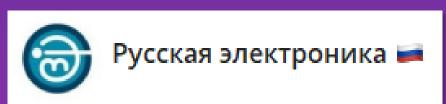
tech@exponenta.ru exponenta.ru

- Технические консультации
- Подбор инструментов
- Обучение специалистов
- Работа на заказ

Генеральный партнёр конференции FPGA-Systems 2021.2



Первая современная отечественная САПР, реализующая сквозной цикл проектирования печатных плат



Информационные партнеры

Портал инженерной

культуры_

Где найти FPGA комьюнити?

- > youtube.com/c/fpgasystems
- admin@fpga-systems.ru

