IV КОНФЕРЕНЦИЯ FPGA РАЗРАБОТЧИКОВ

# FPGA-Systems 2023.1

Актуальное расписание FPGA слётов fpga-systems.ru/meet

Доступно в записи на Youtube

Москва

Санкт-Петербург

# Где найти FPGA комьюнити?



fpga-systems.ru



t.me/fpgasystems <=> @fpgasystems







## Поддержи комьюнити и будущие слёты

Вариант\_0

Bapuant\_1
boosty


# FPGA-Systems 2023.1

# FPGA vs ASIC сравнение маршрутов

Как мы пришли к созданию внутреннего курса FPGA to ASIC

Александр Огурцов





Александр Огурцов

TeamLead по FPGA прототипированию, YADRO

ФГБОУ ВО НИУ МЭИ, "Радиотехника", 2009

### Milestones

Разница в архитектуре FPGA и ASIC

FPGA vs. ASIC: достоинства и недостатки

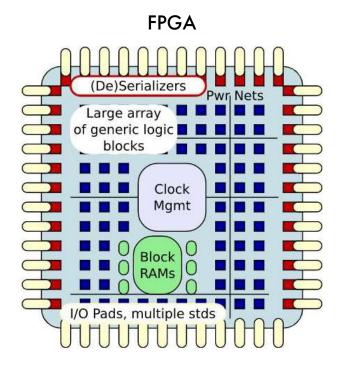
Маршрут проектирования FPGA vs ASIC

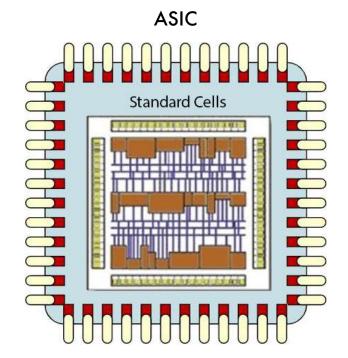
Поговорим о нашем курсе

Что нужно чтобы попасть на наш курс

Milestones

### Разница в архитектуре FPGA и ASIC


FPGA vs. ASIC: достоинства и недостатки


Маршрут проектирования FPGA vs ASIC

Поговорим о нашем курсе

Что нужно чтобы попасть на наш курс

### Разница в архитектуре FPGA и ASIC







#### Основные отличия

- Standard Cells
- Clocks
- Resets
- On-chip RAM
- I/O peripherals
- Power
- Process variations
- Tools

Milestones

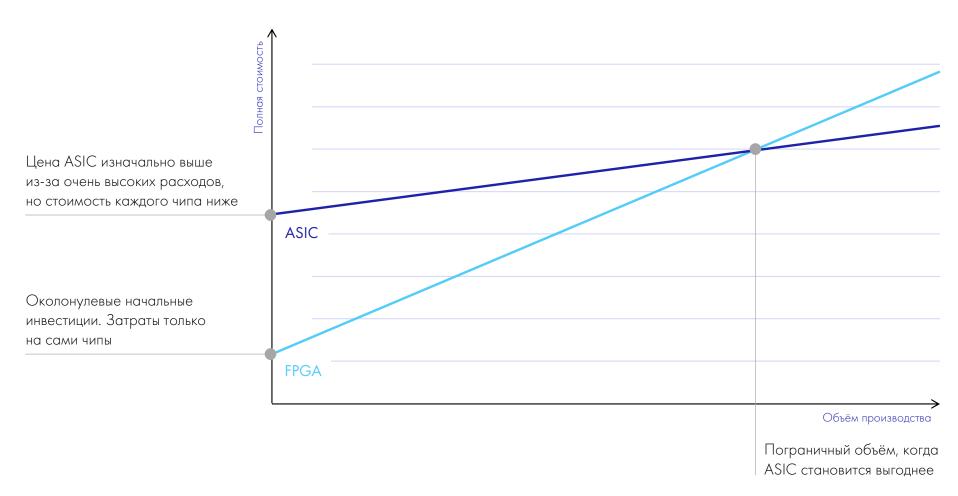
Разница в архитектуре FPGA и ASIC

### FPGA vs ASIC: достоинства и недостатки

Маршрут проектирования FPGA vs ASIC

Поговорим о нашем курсе

Что нужно чтобы попасть на наш курс


### FPGA vs ASIC: достоинства и недостатки



| Property                     | FPGA    | ASIC    |
|------------------------------|---------|---------|
| Маршрут разработки           | Простой | Сложный |
| Время выхода на рынок        | Малое   | Большое |
| Единовременные расходы       | Низкие  | Высокие |
| Производительность (частота) | Низкая  | Высокая |
| Мощность                     | Высокая | Низкая  |
| Специальные IPs (analog)     | Нет     | Есть    |
| Отладка (RAS)                | Есть    | Нет     |

#### YA Dro

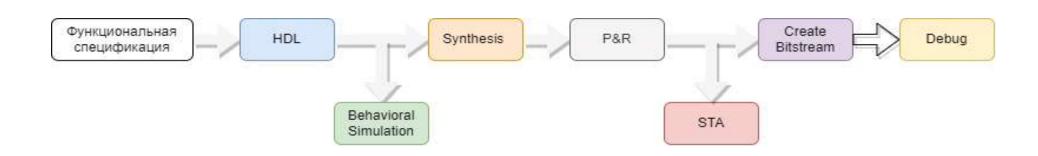
### FPGA vs ASIC: достоинства и недостатки



Milestones

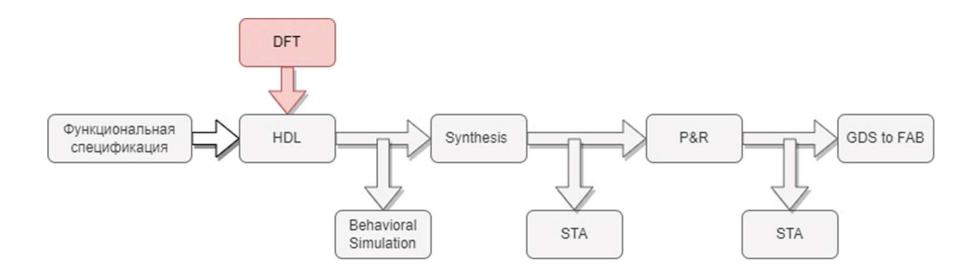
Разница в архитектуре FPGA и ASIC

FPGA vs ASIC: достоинства и недостатки


### Маршрут проектирования FPGA vs ASIC

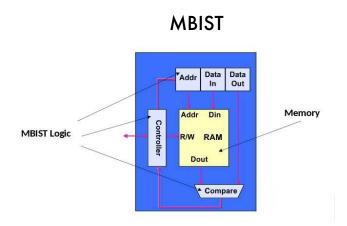
Поговорим о нашем курсе

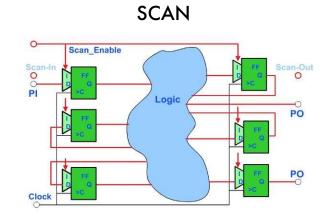
Что нужно чтобы попасть на наш курс


#### YA DRO

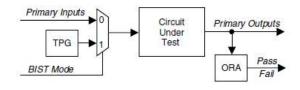
### Упрощенный маршрут проектирования для FPGA




#### YA Dro

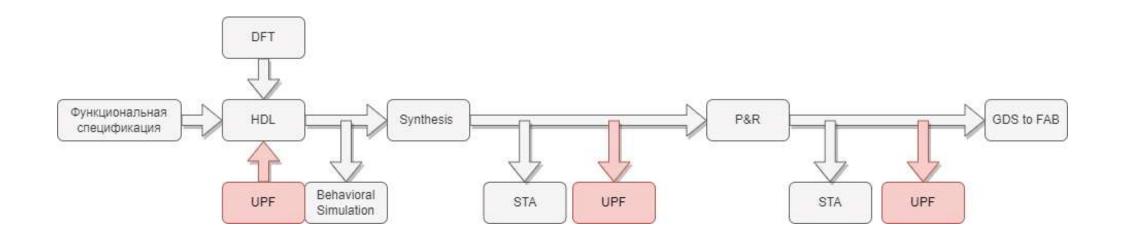

### Упрощенный маршрут проектирования для ASIC




### DFT-design for test

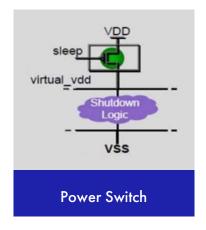


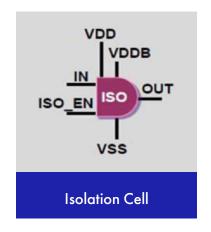


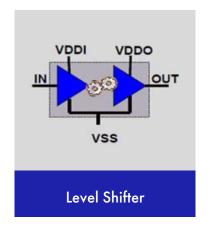


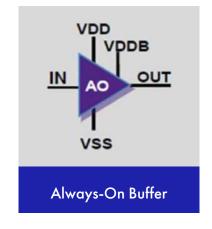


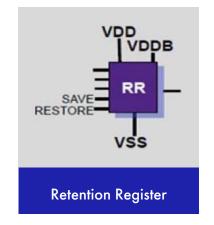


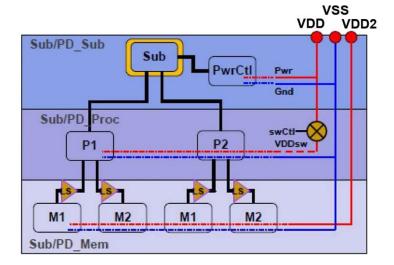


### Упрощенный маршрут проектирования для ASIC





### **UPF** — Universal Power Format









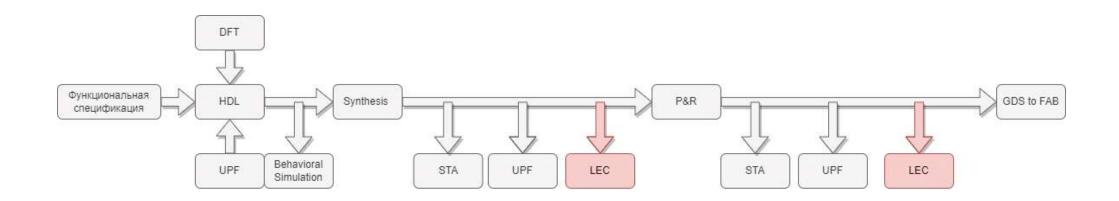





#### create\_supply\_port

create\_supply\_port VDD -direction in create\_supply\_port VSS -direction in

#### create\_supply\_net


create\_supply\_net Pwr -domain PD\_Sub
create\_supply\_net Gnd -domain PD\_Sub

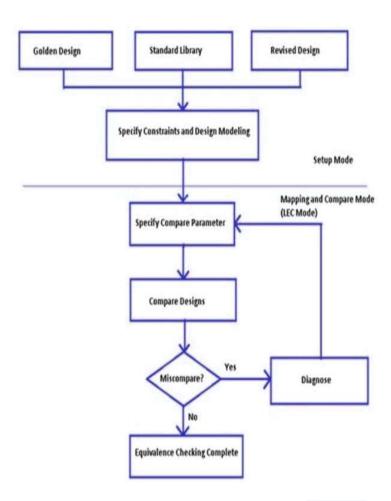
#### connect\_supply\_net

connect\_supply\_net Pwr -ports {VDD}
connect\_supply\_net Gnd -ports {VSS}


### Упрощенный маршрут проектирования для ASIC

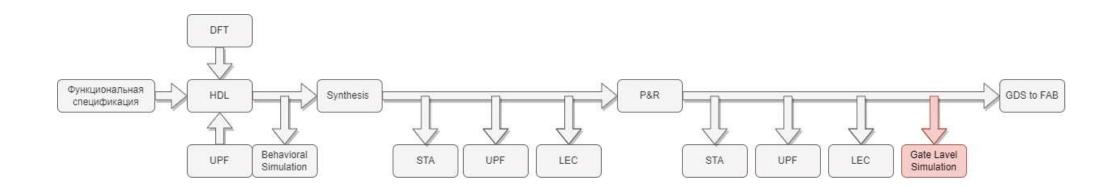





### LEC — Logic Equivalence Checking

- Deductive verification
- Model checking
- Equivalence checking
- Simulation performed on the model
- Emulation, prototyping product + **enviroment**
- Testing performed on the actual product (manufacturing test)




Formal verification





### Упрощенный маршрут проектирования для ASIC





### ASIC разработка



#### ASIC разработка

#### Фронтенд (FE):

- Микроархитектура и разработка
- Написание RTL
- Отладка на симуляции
- Отладка синтеза
- Отладка тайминга
- Отладка изделия

#### FPGA prototyping и валидация:

- Прототип ASIC на FPGA
- Проверка пользовательских сценариев и работы с различными оконечными устройствами
- Загрузка Linux, отладка драйверов и софта
- BenchMarking

#### Верификация

- Создание тестбенча
- Создание плана тестирования (HVP)
- Написание воздействий на отлаживаемое устройство (DUT)
- Анализ покрытия

#### Бэкенд (ВЕ):

- Синтез
- Проверка логической эквивалентности (LEC)
- Размещение и разводка (PnR)
- Формирование GDS

Milestones

Разница в архитектуре FPGA и ASIC

FPGA vs ASIC: достоинства и недостатки

Маршрут проектирования FPGA vs ASIC

### Поговорим о нашем курсе

Что нужно чтобы попасть на наш курс

### Внутренний курс FPGA to ASIC

- Общий маршрут проектирования ASIC
- Процесс интеграции IP
- Построение деревьев синхронизации и сброса
- Статические проверки качества кода (Lint, CDC, RDC)
- Статический временной анализ (STA)
- Формирование констрейнов (.sdc)
- Проведение LEC-анализа
- Проектирование схем с низким энергопотреблением (Power-Aware Design)
- Методика совместной разработки на основе системы контроля версий GitLab+Git
- Вставка тестовых структур (DFT)





#### Чему вы научитесь?

На курсе вы познакомитесь с теоретическими и практическими аспектами ASIC-проектирования систем на кристалле, ведь маршрут их проектирования требует детального понимания как физически устроена микросхема и каким образом цифровая логика должна быть адаптирована под ограничения техпроцесса и параметров производства.

Программа курса составлена на основе опыта и практики наших коллег, которые уже прошли путь от FPGA к ASIC дизайну. Изучение следующих тем даст вам фундаментальный набор практических навыков, необходимых специалисту по разработке систем на кристалле.

20

Milestones

Разница в архитектуре FPGA и ASIC

FPGA vs ASIC: достоинства и недостатки

Маршрут проектирования FPGA vs ASIC

Поговорим о нашем курсе

Что нужно чтобы попасть на наш курс

### Внутренний курс FPGA to ASIC



#### Что вам надо знать?

#### Мы рассчитываем, что вы:

- Понимаете синхронную передачу и дерево клоков
- Отлично знаете Verilog HDL
- Уверенно работаете с форматом .sdc
- Понимаете техники CDC
- Владеете навыками отладки схем на симуляторе и FPGA
- Уверенно используете системы контроля версий
- Владеете Linux
- Знакомы со скриптовыми языками (Tcl, Bash, Make, Python)
- Пишете понятный код, доступный для наследования
- Имеете опыт написания документации на разрабатываемый блок

#### Отлично, если вы:

- Знакомы с SystemVerilog и синтезируемым подмножеством SystemVerilog. Применяете конструкции языка для сокращения времени разработки и минимизации количества ошибок
- Имеете опыт работы с современными FPGA, Xilinx предпочтителен, хорошо знаете EDA (Vivado)
- Обладаете компетенциями в области статического анализа кода с использованием соответствующих тулов (JG, Spyglass и др.)
- Имеете навыки валидации CDC, RDC
- Используете Git для контроля версий
- Программировали на С (ANSI)
- Знаете английский на уровне, достаточном для переписки с техподдержкой



### Другие возможности для обучения



### SOC DESIGN CHALLENGE

#### 21-23 апреля 2023 года

YADRO проводит инженерный хакатон SoC Design Challenge

Вы сможете прокачать навыки проектирования современных микропроцессоров на базе архитектуры RISC-V и попробовать свои силы в решении практических задач маршрута проектирования системы на кристалле (CнК) по четырем направлениям. За отведённое время вам предлагается решить один из предложенных кейсов. Работы будут оценивать экспертыразработчики YADRO Microprocessors, аспиранты и преподаватели МИЭТ.

#### Регистрация открыта до 7 апреля!







**S**yntacore



### Другие возможности для обучения





### Стажировка

#### Стажировка в YADRO

Мы всегда рады видеть в команде талантливых молодых студентов, которые хотят построить карьеру инженера. Приглашаем тебя на долгосрочную и оплачиваемую стажировку, где ты станешь частью группы технологических компаний YADRO. Это возможность получить опыт работы в инженерной компании, проявить себя и войти в профессиональное сообщество.

#### Кого мы ждем в нашу команду?

Студентов очной формы обучения



Бакалавриат / Специалитет — 3 курс и старше



Магистратура — 1 и 2 курс



### Истовый инженер

engineer.yadro.com





#### Лекториум

Записи лекций от признанных спикеров: ведущих практикующих инженеров и учёных











#### Статьи

Научно-познавательные, инженернокругозорные темы



#### Читателям

Образовательный и познавательный контент, позволяющий погрузиться в инженерную культуру



#### Авторам

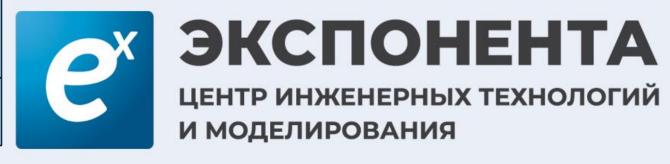
Поддерживаем создание материалов, популяризующих инженерные профессии. Пишите на experts@yadro.com







Генеральный партнёр конференции FPGA-Systems 2023.1


## **Delta**Design

Первая современная отечественная САПР, реализующая сквозной цикл проектирования печатных плат





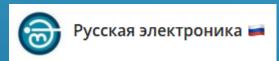
# tech@exponenta.ru exponenta.ru




Генеральный партнёр конференции FPGA-Systems 2023.1

- Технические консультации
- Подбор инструментов
- Обучение специалистов
- Работа на заказ




yadro.com

Генеральный партнер конференции FPGA-Systems 2023.1



## Информационные партнёры

















# Где найти FPGA комьюнити?



fpga-systems.ru



t.me/fpgasystems <=> @fpgasystems



admin@fpga-systems.ru

