
Clock Domain

Crossing
Amr Adel Mohammady

Part 1 __ Part 7

• Sources of chip failure

• How metastability happens in a

flip-flop

• Synchronous vs asynchronous

clock domains

• CDC concerns

• Mean Time Between Failure

(MTBF)

• Timing Constraint for CDC

paths

• Applying False Paths

• Not Applying False Path

• Skew Constraint

• Max Delay Constraint

/amradelm

/amradelm

Part 2 Part 3 Part 4 Part 5 Part 6

• Required pulse width

• The issue of varying

settling time

• CDC Rules:

o Convergence/Glitches

o Multi-Clock fan-in

o Divergence

o Reconvergence

• Data duplication issue

• Pulse generator

• Edge detectors

• Gray coding

• Sending counter values

across different clock

domains

• Multi-bit Data CDC

• MUX Recirculation Scheme

• Handshake Protocol

• Circular FIFO

• Full And Empty Conditions

• Binary to Gray Encoder

And Decoder

• CDC FIFO Operation

• FIFO Depth Calculations

http://www.linkedin.com/in/amradelm

Save The Palestinian Children

Bezalel

Smotrich
Israeli Minister

of Finance

“Might be ‘justified and

moral’ to cause 2 million

Gazans to die of hunger,

but world won’t let us”

Rami Igra
Former Israeli
Intelligence

Official

“Children in Gaza over 4

deserve to be starved”

Israeli minister says it may be ‘moral’ to starve 2
million Gazans, but ‘no one in the world would let

us’ | CNN

Former Mossad official: ‘Children in Gaza over 4
deserve to be starved’ – Middle East Monitor

Israel has been killing Palestinians long before Oct 7

Do Palestinians have the right to defend themselves?

https://edition.cnn.com/2024/08/06/middleeast/israeli-minister-smotrich-starve-gazans-intl/index.html
https://edition.cnn.com/2024/08/06/middleeast/israeli-minister-smotrich-starve-gazans-intl/index.html
https://edition.cnn.com/2024/08/06/middleeast/israeli-minister-smotrich-starve-gazans-intl/index.html
https://www.middleeastmonitor.com/20240217-former-mossad-official-children-in-gaza-over-4-deserve-to-be-starved/
https://www.middleeastmonitor.com/20240217-former-mossad-official-children-in-gaza-over-4-deserve-to-be-starved/

Clock Domain

Crossing
Part 1

Amr Adel Mohammady
/amradelm

/amradelm

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

Content

• Sources of chip failure

• How metastability happens in a flip-flop

• Synchronous vs asynchronous clock domains

• CDC concerns

• Mean Time Between Failure (MTBF)

o Math derivation

o Example

o Adding multiple synchronizer stages

o Summary of how to increase the MTBF

4

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

Introduction

• Clock Domain Crossing (CDC) is a critical aspect of digital circuit design.

• In systems where multiple clock domains operate at different frequencies or phases when signals transfer from one clock domain to another, the risk of data

corruption and metastability arises.

• CDC issues are a primary cause of chip failure. Improper handling of CDC can lead to timing errors, metastability, and data loss, impacting the chip's functionality

and reliability.

5Reference : Why Chips Die (semiengineering.com)

Sources of Chip Failure

http://www.linkedin.com/in/amradelm
https://semiengineering.com/why-chips-die/

/amradelm

/amradelm

Metastability in Sequential Circuits

• To understand metastability we need to look into the internal workings of a flip flop

• The diagram below shows one way to implement D flip flops using inverters and transmission gates.

• The transmission gates acts as a switch that opens or closes depending on a control signal

• The inverter loops are the storage elements that store the data

6

Short circuit when CLK=1

Open circuit when CLK=0

Short circuit when CLK=0

Open circuit when CLK=1

Transmission Gates

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

Flip Flop Internal Operation

7

Before the clock edge arrives (CLK=0), the input goes

from the input pin D through A-B-C-D and waits for the

clock edge.

After the clock edge arrives (CLK=1),

The data flow through B-E-F to the output pin Q.
1 2

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

Setup Time

8

To understand how a setup violation happens lets

go through this scenario:
Lets assume the FF was storing a logic zero (0)

1

0

0

1

1

0

01

Now a new data arrives at the D input ,that is

logic one (1), and starts overwriting the previous
stored value

2

0

0

1

1

0

01

1 0

0

The clock edge arrives before the new data have

time to overwrite node D. The transmission gates
switch

3

0 1

0

00

1 0

The transmission gate between D & A is now a

short circuit, so D is trying to force the inverter
loop to store the old data while A-B-C is trying

to force the loop to store the new data

4

0 1

0

00

1 0

The conflict between the two electrical values will

propagate to all the nodes in the FF and the
output won’t be a 0 or 1. The FF is said to be in a

metastable state

5

x x

x

xx

x x

After some time one of the 2 values will

overcome the other and the FF will leave the
metastable state. The final state could be the

old data or the new data

6

? ?

?

??

? ?

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

Hold Time

9

To understand how a hold violation happens lets go

through this scenario:
Lets assume the FF was storing a logic zero (0)

1

0

0

1

1

0

01

Now a new data arrives at the D input ,that is

logic one (1), and starts overwriting the previous
stored value

2

0

0

1

1

0

01

1 0

0

The clock edge arrives, the red transmission gates

starts to open while the green ones starts to close
(short)

3

1 1

0

00

1 0

Before the red gates completely open, a newer data

arrives at the D pin, The signal at the D pin is trying
to force the inverter loops to store the newer data,

the nodes A-B-C-D are trying to force it to store the

new data

4 The conflict between the two electrical values will

propagate to all the nodes in the FF and the
output won’t be a 0 or 1. The FF is said to be in a

metastable state

5

x x

x

xx

x x

After some time one of the 2 values will

overcome the other and the FF will leave the
metastable state.

6

? ?

?

??

? ?

1

1 0

1

10

1 00

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

Metastability

10

• The image below shows metastability in a FF. The FF becomes metastable (not 0 or 1) for some time before it settles to 0 or 1

Reference : Picture taken from W. J. Dally, Lecture notes for EE108A, Lecture 13: Metastability and

Synchronization Failure.

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

Metastability in Sequential Circuits

11

• To avoid metastability we need to make sure the data doesn’t change near the clock edge. We use static timing analysis (STA) to know when the data will

arrive relative to the clock edge.

• If we can’t know when the data will arrive relative to the clock edge, then we can’t use STA.

Data should not change

near the clock edge

𝑇ℎ𝑜𝑙𝑑𝑇𝑠𝑒𝑡𝑢 𝑝

𝑇𝑙𝑎𝑢𝑛𝑐ℎ_𝑒𝑑𝑔𝑒

𝑇𝑐𝑎𝑝𝑡𝑢𝑟𝑒_𝑒𝑑𝑔𝑒

𝑇𝑙𝑎𝑢𝑛𝑐ℎ_𝑙𝑎𝑡𝑒𝑛𝑐𝑦 𝑇𝑐𝑞

𝑇𝑐𝑜𝑚𝑏

𝑇𝑠𝑒𝑡𝑢𝑝
𝑇𝑐𝑎𝑝𝑡𝑢𝑟𝑒_𝑙𝑎𝑡𝑒𝑛𝑐𝑦

Data arrived at

FF2 at this point

Data is required to arrive

at FF2 before this point

𝑇𝑙𝑎𝑢𝑛𝑐ℎ_𝑒𝑑𝑔𝑒

𝑇𝑐𝑎𝑝𝑡𝑢𝑟𝑒_𝑒𝑑𝑔𝑒 − 1

𝑇𝑐𝑞

𝑇𝑐𝑜𝑚𝑏

𝑇𝑐𝑎𝑝𝑡𝑢𝑟𝑒_𝑙𝑎𝑡𝑒𝑛𝑐𝑦

Data arrived
at FF2 at this

point

𝑇ℎ𝑜𝑙𝑑

Data is required to arrive after
this point

Setup Timing Analysis Hold Timing Analysis

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

Metastability in Sequential Circuits

12

• When the clock of the launch and capture FFs come from the same source, we can know when the capture edge will arrive relative to the launch edge by

calculating the difference in the clock network. This difference is called the skew or the phase difference.

• Even if the clock frequency is different between the launch and capture FFs, we still can use STA because we know the delay of the clock dividers and hence

know the phase difference.

• The problem arises when the clocks of the launch and capture FFs come from different sources (PLL, oscillator). There is no way to know the phase difference

between the two PLLs even if they have the same frequency. We can’t use STA and we need to find another way to deal with this issue.

? ?

Known Phase Difference Known Phase Difference Unknown Phase Difference

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

Clock Domains

13

• Clock domain is a group of registers that uses the same clock.

• Synchronous Clocks: Are clocks where the phase difference between the clocks is

known ,such as a clock and the divided version of it.

• Asynchronous Clocks: Are clocks that come from different sources and the phase

difference is not known.

• Clock domain crossing (CDC) cares about signals that travel between asynchronous

clock domains

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

CDC Concerns

14

• Before we discuss the solutions to CDC we need to know the issues we need to solve.

• CDC Concerns:

o Data corruption: When metastability occurs the data might get corrupted since it can settle at 0 or 1

regardless of the input.

o Data incoherence: The system might be fault tolerant and handle corrupted data. However, we want all the

blocks in the circuit to see the same data (either all see 0 or all see 1)

o Data loss: When data goes from a faster domain to a slower domain some samples might be skipped/lost

o Data duplication: When a signal is intended to occur for one cycle but is read multiple times by the receiving

domain.

o Chip burning : During metastability, both the PMOS and NMOS networks are ON. This results in a big current

flowing through the transistor. If multiple gates entered this state at the same time and for a long duration

the chip might burn.

Data Loss Data Duplication
Short Circuit Current1

Morgenshtein, Arkadiy. “Short-Circuit Power Reduction by Using High-Threshold Transistors.” Journal of
Low Power Electronics and Applications 2 (2012): 69-78.

Reference :

Data Corruption

Data Incoherence

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

Mean Time Between Failure

(MTBF)

15

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

Mean Time Between Failure

16

• Our first step in dealing with CDC metastability is to realize that we can’t avoid it.

• Instead, we will try to handle and mitigate the problems that arise due to it.

• We will accept that FF1 (in the left diagram) will go metastable but we will do our best to make sure the metastability value doesn’t reach FF2. Otherwise, the

metastable value will reach multiple areas in the chip causing it to enter a faulty state or worse burn the chip.

• Mean Time Between Failure (MTBF) is a reliability metric used to predict the average time between failures for a system or component during normal operation.

• So, our 2nd step in dealing with CDC is to do our best to decrease the frequency of error or in other words: increase the MTBF.

• In the following slides we will derive the mathematical expression for MTBF and then see how to increase it.

"We must embrace pain and burn it as fuel for our journey." — Kenji Miyazawa

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

MTBF Derivation

17

• We need to know the frequency that FF2 will receive a metastable value and then do our best to decrease this frequency

• To calculate this we need to know 2 things:

1. How frequently will FF1 go metastable? 𝑓𝑚𝑒𝑡𝑎

o FF1 will go metastable if a toggle from clock domain 1 reaches it during the setup and hold window.

o This depends on several factors:

▪ Clock 1 frequency 𝑓𝑐𝑙𝑘1 : The higher the frequency the more we receive inputs and therefore toggles

▪ Activity factor 𝛼: This term shows how frequent does the input toggle relative to the clock. 𝛼 = 1 means the input toggle once every clock cycle.

𝛼 > 1 means the input toggles multiple times every clock cycle (glitches).

▪ The setup and hold window 𝑇0
1: If clk 2 period is 𝑇𝑐𝑙𝑘2, the probability that the async input will arrive during the setup and hold window =

𝑇𝑜

𝑇𝑐𝑙𝑘2

o Therefore 𝑓𝑚𝑒𝑡𝑎 = 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑡𝑜𝑔𝑔𝑙𝑒𝑠 𝑓𝑑 × 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑡ℎ𝑎𝑡 𝑡ℎ𝑒 𝑡𝑜𝑔𝑔𝑙𝑒 𝑤𝑖𝑙𝑙 𝑐𝑎𝑢𝑠𝑒 𝑚𝑒𝑡𝑎𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝛼𝑓𝑐𝑙𝑘1 ×
𝑇𝑜

𝑇𝑐𝑙𝑘2
= 𝛼𝑓𝑐𝑙𝑘1𝑓𝑐𝑙𝑘2𝑇𝑜

Higher Freq -> More Toggles More Glitches -> More Toggles

𝛼 = 1

𝛼 = 3

𝑓𝑑(𝑇𝑜𝑔𝑔𝑙𝑒 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦) = 𝛼𝑓𝑐𝑙𝑘1

There are few resources explaining this factor in detail. Reference (5) mentions it’s the FF propagation delay
𝑇𝑐𝑞. While reference (3, 4) says it’s the metastability window

[1] :

[1]

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

MTBF Derivation

18

2. The 2nd thing to know is: If FF1 went metastable, what is the probability that the data will remain metastable till

reaching FF2? 𝑃𝑈

o This is given by 𝑃𝑢 = 𝑒
−

𝑡𝑤
𝜏𝑡𝑒𝑐ℎ , where

▪ Time window 𝑇𝑤: The time allowed for the metastable value to settle. This is the positive slack of the

path between FF1 and FF2.

▪ Time constant 𝜏𝑡𝑒𝑐ℎ : A time constant that depends on how fast the logic circuit drives the output

towards a valid logic level. This is a function of RC time constants and circuit gain.

• Therefore, the frequency that FF1 will produce metastable value for FF2 = 𝑓𝑚𝑒𝑡𝑎 × 𝑃𝑢 = 𝛼𝑓𝑐𝑙𝑘1𝑓𝑐𝑙𝑘2𝑇𝑜 × 𝑒
−

𝑡𝑤
𝜏𝑡𝑒𝑐ℎ

• The time between two failures (MTBF) =
1

𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑓𝑎𝑖𝑙𝑢𝑟𝑒
=

1

𝛼𝑓𝑐𝑙𝑘1𝑓𝑐𝑙𝑘2𝑇𝑜×𝑒
−

𝑡𝑤
𝜏𝑡𝑒𝑐ℎ

=
𝑒

𝑡𝑤
𝜏𝑡𝑒𝑐ℎ

𝛼𝑓𝑐𝑙𝑘1𝑓𝑐𝑙𝑘2𝑇𝑜

• To increase the MTBF:

o Use lower frequencies 𝑓𝑐𝑙𝑘1 𝑓𝑐𝑙𝑘2

o Decrease the activity factor 𝛼:

o Decrease 𝑇𝑜:

o Increase 𝑇𝑤

𝑇𝑙𝑎𝑢𝑛𝑐ℎ_𝑒𝑑𝑔𝑒

𝑇𝑐𝑎𝑝𝑡𝑢𝑟𝑒_𝑒𝑑𝑔𝑒

𝑡𝑤

𝑇𝑐𝑞

𝑇𝑐𝑜𝑚𝑏

𝑇𝑠𝑒𝑡𝑢𝑝

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

MTBF Calculations – Example

19

• To get a feeling of the impact of each term in the equation we will work out an example using the values in the diagram below:

o 𝑡𝑤 = 𝑠𝑙𝑎𝑐𝑘 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑭𝑭𝟏, 𝑭𝑭𝟐 = 𝑐𝑙𝑘2 𝑝𝑒𝑟𝑖𝑜𝑑 − 𝑇𝑐𝑞 − 𝑇𝑐𝑜𝑚𝑏 − 𝑇𝑠𝑒𝑡𝑢𝑝 = 10 − 0.2 − 4.5 − 0.5 = 4.8 𝑛𝑠

o 𝑇𝑜 = 𝑠𝑒𝑡𝑢𝑝 𝑡𝑖𝑚𝑒 + ℎ𝑜𝑙𝑑 𝑡𝑖𝑚𝑒 = 0.5 + 0.3 = 0.8 𝑛𝑠1

o 𝑀𝑇𝐵𝐹 =
1

𝛼𝑓𝑐𝑙𝑘1𝑓𝑐𝑙𝑘2𝑇𝑜
𝑒

𝑡𝑤
𝜏𝑡𝑒𝑐ℎ =

1

3×(50×106)(100×106)(0.8×10−9)
 𝑒

4.8×10−9

0.2×10−9 = 2.207 × 103 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 = 0.0255 𝑑𝑎𝑦𝑠

• Lets try increasing the MTBF by using fast FFs with better 𝑻𝒄𝒒, 𝑻𝒔𝒆𝒕𝒖𝒑, 𝑻𝒉𝒐𝒍𝒅. This will enhance 𝒕𝒘 and 𝑻𝒐 and both will enhance MTBF

o The new FF has : 𝑇𝑐𝑞 = 0.05, 𝑇𝑠𝑒𝑡𝑢𝑝 = 0.2, 𝑇ℎ𝑜𝑙𝑑 = 0.1

o New 𝑡𝑤 = 10 − 0.05 − 4.5 − 0.2 = 5.25 𝑛𝑠

o New 𝑇𝑜 = 0.2 + 0.1 = 0.3 𝑛𝑠

o 𝑀𝑇𝐵𝐹 =
1

3×(50×106)(100×106)(𝟎.𝟑×𝟏𝟎−𝟗)
 𝑒

𝟓.𝟐𝟓×𝟏𝟎−𝟗

0.2×10−9 = 5.585 × 104 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 = 0.646 𝑑𝑎𝑦𝑠

o We got x25 improvement by using fast FFs but it’s still not enough.

𝛼 = 3
𝑓𝑐𝑙𝑘1 = 50𝑀𝐻𝑧
𝑇𝑐𝑙𝑘1 = 20 𝑛𝑠

𝑓𝑐𝑙𝑘2 = 100𝑀𝐻𝑧
𝑇𝑐𝑙𝑘2 = 10 𝑛𝑠

𝑇𝑐𝑜𝑚𝑏 = 4.5 𝑛𝑠

𝑇𝑠𝑒𝑡𝑢𝑝 = 0.5 𝑛𝑠

𝑇ℎ𝑜𝑙𝑑 = 0.3 𝑛𝑠

𝑇𝑐𝑞 = 0.2 𝑛𝑠

𝜏𝑡𝑒𝑐ℎ = 0.2 𝑛𝑠

𝑇𝑠𝑒𝑡𝑢𝑝 = 0.5 𝑛𝑠

𝑇ℎ𝑜𝑙𝑑 = 0.3 𝑛𝑠

There are few resources explaining this factor in detail. Reference (5) mentions it’s the FF propagation delay
𝑇𝑐𝑞. While reference (3, 4) says it’s the metastability window

[1] :

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

MTBF Calculations – Example

20

• Lets focus on the activity factor 𝜶. To reduce it we need to reduce the glitches.

o Glitches happen due to unequal delays in combinational circuits.

o The easiest way to get a clean signal without glitches is to add a register. The register changes

value only at the clock edge and so, acts as a filter against glitches. This will lead to an activity

factor 𝛼 ≤ 1

o We will use the worst case 𝛼 = 1 where the register toggles every clock cycle.

o 𝑀𝑇𝐵𝐹 =
1

𝟏×(200×106)(300×106)(0.3×10−9)
 𝑒

5.25×10−9

0.2×10−9 = 1.675 × 105 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 = 1.94 𝑑𝑎𝑦𝑠

• Now lets enhance the slack 𝒕𝒘. We enhanced it when we used faster FFs. Now we will focus

on the combinational path delay.

o We can use fast cells or reduce the wire delay between the cells.

o However, the optimal solution is to remove the delay entirely be moving the logic after FF2

making 𝑇𝑐𝑜𝑚𝑏 = 0

o Therefore, 𝑡𝑤 = 10 − 0.05 − 0.2 = 9.75 𝑛𝑠

o 𝑀𝑇𝐵𝐹 =
1

1×(200×106)(300×106)(0.3×10−9)
 𝒆

𝟗.𝟕𝟓×𝟏𝟎−𝟗

𝟎.𝟐×𝟏𝟎−𝟗

= 9.903 × 1014 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 = 1.1454 × 109𝑑𝑎𝑦𝑠 = 3.137 × 106 𝑦𝑒𝑎𝑟𝑠

o Removing the logic leads to a massive improvement

Reduce 𝜶

Increase 𝒕𝒘

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

MTBF Calculations – Example

21

• Lets assume the architecture team decided to increase the frequency of 𝒇𝒄𝒍𝒌𝟐 = 𝟑𝟎𝟎𝑴𝑯𝒛 (𝐓𝐜𝐥𝐤𝟐 = 𝟑. 𝟑 𝐧𝐬). This will also affect 𝑻𝒘

o 𝑡𝑤 = 3.3 − 0.05 − 0.2 = 3.05 𝑛𝑠

o 𝑀𝑇𝐵𝐹 =
1

1×(50×106)(𝟑𝟎𝟎×𝟏𝟎𝟔)(0.3×10−9)
 𝑒

3.05×10−9

0.2×10−9 = 0.9 𝑠𝑒𝑐𝑜𝑛𝑑𝑠

o The MTBF decreased significantly

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

MTBF Calculations – Two Flip Flops

22

• Now lets add a 2nd FF after FF1 and see how this the will affect the MTBF for FF2.

o We will assume clock domain 1 along with FF1 are sources of a toggling input and see how this input affects FF1.2 and therefore FF2

o We have all the values to substitute in the MTBF equation except the frequency of an asynchronous input 𝑓𝑑 = 𝛼𝑓𝑐𝑙𝑘2 𝑎𝑟𝑟𝑖𝑣𝑖𝑛𝑔 𝑎𝑡 𝑭𝑭𝟏. 𝟐

o We showed that the frequency that FF1 produces a metastable value = 𝑓𝑚𝑒𝑡𝑎 × 𝑃𝑢 = 𝛼𝑓𝑐𝑙𝑘1𝑓𝑐𝑙𝑘2𝑇𝑜 × 𝑒
−

𝑡𝑤
𝜏𝑡𝑒𝑐ℎ. We can assume this is the frequency that FF1

produces a toggle 𝑓𝑑1
.

o Therefore the frequency that FF2 receives a metastable output = 𝑓𝑚𝑒𝑡𝑎 × 𝑃𝑢 = 𝑓𝑑1
𝑓𝑐𝑙𝑘2𝑇𝑜 × 𝑒

−
𝑡𝑤

𝜏𝑡𝑒𝑐ℎ = 𝛼𝑓𝑐𝑙𝑘1𝑓𝑐𝑙𝑘2
2 𝑇𝑜

2 × 𝑒
−

𝑡𝑤1
𝜏𝑡𝑒𝑐ℎ

 −
𝑡𝑤2

𝜏𝑡𝑒𝑐ℎ .

o MTBF =
𝑒

𝑡𝑤1
𝜏𝑡𝑒𝑐ℎ

+
𝑡𝑤2

𝜏𝑡𝑒𝑐ℎ

𝛼𝑓𝑐𝑙𝑘1𝑓𝑐𝑙𝑘2
2 𝑇𝑜

2

o Now if we add a 2nd FF:

▪ 𝑀𝑇𝐵𝐹2 =
1

𝑓𝑑𝑓𝑐𝑙𝑘2𝑇𝑜
𝑒

𝑡𝑤
𝜏𝑡𝑒𝑐ℎ =

1
1

𝑀𝑇𝐵𝐹1
𝑓𝑐𝑙𝑘2𝑇𝑜

𝑒
𝑡𝑤

𝜏𝑡𝑒𝑐ℎ =
1

1

0.9
(300𝑥106)(0.3×10−9)

𝑒
3.05×10−9

0.2×10−9

 = 4.2 × 107𝑠𝑒𝑐𝑜𝑛𝑑𝑠 = 485.69 𝑑𝑎𝑦𝑠

▪ The improvement is good but not enough

o If we add a third FF:

▪ 𝑀𝑇𝐵𝐹3 =
1

𝑓𝑑𝑓𝑐𝑙𝑘2𝑇𝑜
𝑒

𝑡𝑤
𝜏𝑡𝑒𝑐ℎ =

1
1

𝑀𝑇𝐵𝐹2
𝑓𝑐𝑙𝑘2𝑇𝑜

𝑒
𝑡𝑤

𝜏𝑡𝑒𝑐ℎ =
1

1

4.2×107(300𝑥106)(0.3×10−9)
𝑒

3.05×10−9

0.2×10−9

 = 1.96 × 1015𝑠𝑒𝑐𝑜𝑛𝑑𝑠 = 2.2685 × 1010 𝑑𝑎𝑦𝑠 = 6.211 × 107𝑦𝑒𝑎𝑟𝑠

Async input at FF1.2

= 𝑓𝑑 =
1

𝑀𝑇𝐵𝐹

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

How to Increase the MTBF

23

• From the previous calculations we can have several observations:

o Adding more stages/FFs enhances the MTBF.

▪ For low frequency designs 2 stages are enough. But for high-frequency designs, we need to add more than 2 stages.

▪ The disadvantage of this solution is the added latency due to the added stages.

▪ The FFs stages (FF1, and FF1.2) are called CDC synchronizers

o Reducing 𝑇𝑐𝑜𝑚𝑏 gets better MTBF. To do this:

▪ Don’t add any combinational logic in front of the synchronizers

▪ In the PNR stage, place the sync FF close to each other to minimize the buffering and wire delay.

o Using fast FFs with smaller 𝑇𝑜: Standard cell libraries contain special sync flip flops that have these parameters enhanced to get better MTBF.

o Reducing the activity factor by sampling the data from the sending domain after a FF to avoid glitches

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

Conclusion

24

• We want to know what we solved till now. Our CDC concerns were:

o Data corruption: Not fixed. The system, till now, has to be fault tolerant and be able to handle corrupted data.

o Data incoherence: Fixed. The metastable value settles within the synchronizers at 0 or 1 and then propagates to all the 2nd domain blocks with the same

settled value

o Data loss: Not fixed

o Data duplication: Not fixed

o Chip burning: Fixed. We limited the metastability propagation between the synchronizers and reduced its occurrence frequency.

• In the next parts we will see how to deal with the remaining concerns.

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

References

25

1) https://www.uio.no/studier/emner/matnat/ifi/IN3160/v21/timeplan/in3160-l92-clock-domains.pdf

2) https://ieeexplore.ieee.org/document/1676187

3) https://www.edn.com/keep-metastability-from-killing-your-digital-design/

4) https://people.ece.ubc.ca/~edc/7660.jan2018/lec11.pdf

5) https://www.onsemi.com/pub/Collateral/AN1504-D.PDF

http://www.linkedin.com/in/amradelm

Clock Domain

Crossing
Part 2

Amr Adel Mohammady
/amradelm

/amradelm

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

Introduction

27

• In the previous part we saw how to limit the effect of metastability between multiple stages of flip-flop

that we called CDC synchronizer

• The idea is to isolate the metastable value between the synchronizer FFs and give it enough time until it

settles to a known value then give it to the receiving domain

• We also discussed the MTBF metric and how to increase it to ensure a reliable circuit.

• We want to know what we solved till now. Our CDC concerns were:

o Data corruption: Not fixed. The system, till now, has to be fault tolerant and be able to handle

corrupted data.

o Data incoherence: Fixed. The metastable value settles within the synchronizers at 0 or 1 and then

propagates to all the blocks of domain 2 with the same settled value

o Data loss: Not fixed

o Data duplication: Not fixed

o Chip burning: Fixed. We limited the metastability propagation between the synchronizers and reduced

its occurrence frequency.

• In this part we will handle some of the remaining concerns

metastability

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

Required Pulse Width

28

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

Required Pulse Width

29

• Adding synchronizers only protected the chip from seeing a metastable value. However, we still

get corrupted data because the data can settle at a value different than the intended one.

• To ensure that correct data is received we need to make sure the data pulse is wide enough to

be safely captured by a domain 2 clock edge.

• The first example shows a small data width (one clock wide) that completely got missed by any

capture edge of clock 2

• The second example shows a wider data pulse that reached a capture edge but not wide

enough that it caused a hold violation and therefore metastability

• The required width for correct operation is ≥ 𝑐𝑙𝑘2 𝑝𝑒𝑟𝑖𝑜𝑑 + 𝑇𝑠𝑒𝑡𝑢𝑝 + 𝑇ℎ𝑜𝑙𝑑 . This way we

guarantee a capture edge will lie within the data pulse width without any setup or hold violation.

• As a rule of thumb1, we need to make the data at least 1.5 × 𝑐𝑙𝑘2 𝑝𝑒𝑟𝑖𝑜𝑑 wide.

𝑻𝒉𝒐𝒍𝒅

Clock Domain Crossing (CDC) Design & Verification Techniques Using SystemVerilog by Clifford E. Cummings[1] :

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

Required Pulse Width – Examples

30

1. (FAST TO SLOW) Let 𝒇𝒄𝒍𝒌𝟏 = 𝟐𝟐𝟓 𝑴𝑯𝒛, 𝒇𝒄𝒍𝒌𝟐 = 𝟏𝟓𝟎 𝑴𝑯𝒛. For how many cycle should domain 1 hold the data stable to guarantee safe capture by domain 2?

• 𝑇𝑐𝑙𝑘1 =
1

225×106 = 4.4 𝑛𝑠. 𝑇𝑐𝑙𝑘2 =
1

150×106 = 6.6 𝑛𝑠.

• The data should be held stable for 1.5 × 𝑇𝑐𝑙𝑘2 = 1.5 × 6.6 = 9.9 𝑛𝑠

• The number of cycles =
9.9

4.4
= 2.25 𝑐𝑦𝑐𝑙𝑒𝑠 ≅ 3 𝑐𝑦𝑐𝑙𝑒𝑠.

2. (SLOW TO FAST) Let 𝒇𝒄𝒍𝒌𝟏 = 𝟏𝟎𝟎 𝑴𝑯𝒛, 𝒇𝒄𝒍𝒌𝟐 = 𝟏𝟐𝟎 𝑴𝑯𝒛. For how many cycle should domain 1 hold the data stable to guarantee safe capture by domain 2?

• 𝑇𝑐𝑙𝑘1 =
1

100×106 = 10 𝑛𝑠. 𝑇𝑐𝑙𝑘2 =
1

120×106 = 8.3 𝑛𝑠.

• The data should be held stable for 1.5 × 𝑇𝑐𝑙𝑘2 = 1.5 × 8.3 = 12.45 𝑛𝑠

• The number of cycles =
12.45

10
= 1.245 𝑐𝑦𝑐𝑙𝑒𝑠 ≅ 2 𝑐𝑦𝑐𝑙𝑒𝑠.

𝑻𝒉𝒐𝒍𝒅
𝑻𝒔𝒆𝒕𝒖𝒑

1.5 × 𝑇𝑐𝑙𝑘2

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

Required Pulse Width

31

• Consider the example on the right:

1. Domain 1 sends signal A to domain 2. The change occurs close to the edge of clk2 causing a

metastability in the first sync FF.

2. Signals B leaves metastability and settle at a different value “logic 0”.

3. C gets the wrong value “logic 0”. However, because pulse A was wide enough, it met another

capture edge of clk2 without violating setup or hold. The correct value enters the first sync FF.

4. The logic receives the correct value “logic 1”.

• This shows we can safely transfer a pulse from one domain to another provided that the pulse is wide

enough.

1 2 3 4

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

The Issue of Varying Delays/Settling Time

32

• Consider the same previous example :

1. Domain 1 sends signal A to domain 2. The change occurs close to the edge of clk2 causing a

metastability in the first sync FF.

2. Signals B leaves metastability and settle at a different value “logic 0”.

3. C gets the wrong value “logic 0”. However, because pulse A was wide enough, it met another

capture edge of clk2 without violating setup or hold. The correct value enters the first sync FF.

4. The logic receives the correct value “logic 1”.

• Lets consider another case were B in cycle (2) have metastability but settles at “logic 1” which

happens to be the correct logic:

• This means the pulse will arrive at C earlier one cycle, that is at cycle (3) instead of (4).

• The correct logic have a varying delay: it can arrive at (3) or (4).

• This varying delay is unavoidable and the design needs to be tolerant of such delays and work

under either cases

• Advanced CDC tools inject varying delays into the CDC path and verify the design is functionally

correct in all cases.

1 2 3 4

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

CDC Rules

33

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

FF Synchronizer Rules

34

• VLSI CDC tools are used to address issues related to clock domain crossings.

• They can detect if a CDC signal is not synchronized or if it is synchronized but without the proper design practices.

• The tools check and analyze the design RTL and then generate reports addressing the potential issues. The issues reported have different severity

levels (warning, critical, etc)

• In the following section we will show some of the CDC rules related to FF synchronizers

Example CDC Report From

Cadence Jaspergold

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

Convergence in The Sending Domain / Combinational in Sync Fan-in

35

• Logic converging in the sending domain will cause lots of glitches and we saw how that

affects the activity factor and therefore the MTBF.

• Most CDC tools will produce a critical message or even an error if combinational logic was

detected in front of the synchronizers.

• How to fix:

• Add a register after the convergence point in the sending domain then pass the clean

signal to the CDC synchronizers.

FF filters glitches

Violation

Solution

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

Multi Clock Fan-in

36

• We get this violation when signals from multiple clock domains converge and are sent to the CDC

sync.

• This will increase the glitches which will damage the MTBF.

• Also, this makes it difficult for CDC tools to properly identify and analyze the design.

• How to fix:

• A wrong solution is to add a glitch filtering FF. because this will lead to a new CDC path as shown.

• The correct solution is to synchronize the signal from clk_3 to clk_1 or from clk_1 to clk_3, do the

computation in a single domain, then pass it to the CDC sync.

Violation

Wrong SolutionSolution

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

Divergence in the Sending Domain

37

• Divergence occurs when a CDC signal is passed by multiple synchronizers to the other domain.

• Consider the example on the right:

1. Domain 1 sends a write_enable signal to domain 2 through 3 parallel synchronizers. The change occurs

close to the edge of clk2 causing a metastability in all 3 synchronizers.

2. The 1st sync exits metastability and settle at logic 0. The other 2 syncs settle at logic 1.

3. The FSMs in domain 2 receive the signals from the syncs. The 1st FSM doesn’t see an active

write_enable signals so it remains IDLE, the other 2 FSMs see an active signal and act accordingly. We

have incoherency in the system.

4. In the next cycle, all FSMs receive the correct value but the damage is already done.

• How to fix1:

• Pass the signal with one synchronizer then diverge/fanout at the receiving domain1

The issue might appear silly and rare to happen however it may occur due to lack of good communication among the team
members: One engineer create a sync inside their block to pass a global signal to another domain, another engineer create another
sync inside their module to pass the same signal. It’s better to create a single and separate module for CDC synchronization

[1] :

1 2 3 4

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

Divergence of a Metastable Signal

38

• This issue is similar to the previous one, you shouldn’t read/fanout the value between the synchronizers.

• How to fix:

• Pass the signal with one synchronizer then diverge/fanout at the receiving domain

Wrong

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

Multi Signal Reconvergence in the Receiving Domain

39

• When multiple signals are passed from the sending domain and then converge in the receiving domain, as shown in

the diagram, we may get functional errors due to the difference in the settling time between the two signals.

• Consider the example on the right: Domain 1 sends a 2-bit control signal to domain 2.

Initially we are in IDLE=2’b00

1. Domain 1 sends “2’b11 (WRITE)” to domain 2. The change occurs close to the edge of clk2 causing a

metastability.

2. Signals a2 and b2 leave metastability and settle at different values “2’b10” (READ).

3. The value “2’b10” (READ) is passed to a3 and b3 and then to the combinational logic causing it to go to a

(READ) state while the intended state was (WRITE).

4. The logic receives the correct value (WRITE) later but the damage is already done.

• This example shows the problem with sending multiple signals from one domain to another even with just 2 bits.

• How to fix:

• Converge these signals in the sending domain and send them to the receiving domain as one signal. However,

this is not always possible.

• Use gray encoding to make sure only one signal changes at a time (Will be discussed later)

• Use MUX synchronization scheme to pass these signals as a group (Will be discussed later)

1 2 3 4

a2a1 a3

b2b1 b3

FSM

READ

Write

Write

READ

Write

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

Conclusion

40

• We want to know what we solved till now. Our CDC concerns were:

o Data corruption: Partially fixed. The system, till now, can only send 1-bit data. Also, this data has a varying arrival time.

o Data incoherence: Fixed. The metastable value settles within the synchronizers at 0 or 1 and then propagates to all the 2nd domain blocks with the same

settled value

o Data loss: Fixed. The pulse is wide enough that it won’t be missed by domain 2

o Data duplication: Not fixed

o Chip burning: Fixed. We limited the metastability propagation between the synchronizers and reduced its occurrence frequency.

• In the next parts we will see how to deal with the remaining concerns.

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

References

41

1) https://www.uio.no/studier/emner/matnat/ifi/IN3160/v21/timeplan/in3160-l92-clock-domains.pdf

2) https://ieeexplore.ieee.org/document/1676187

3) https://www.edn.com/keep-metastability-from-killing-your-digital-design/

4) https://people.ece.ubc.ca/~edc/7660.jan2018/lec11.pdf

5) https://www.onsemi.com/pub/Collateral/AN1504-D.PDF

6) https://www.linkedin.com/in/lukas-vik/recent-activity/articles/

http://www.linkedin.com/in/amradelm

Clock Domain

Crossing
Part 3

Amr Adel Mohammady
/amradelm

/amradelm

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

Introduction

43

• In the previous part we discussed CDC synchronizers their rules and how to ensure safe capture by

launching a wide pulse.

• Our CDC concerns till now are:

o Data corruption: Partially fixed. The system, till now, can only send 1-bit data. Also, this data has a

varying arrival time.

o Data incoherence: Fixed. The metastable value settles within the synchronizers at 0 or 1 and then

propagates to all the 2nd domain blocks with the same settled value. We saw the divergence issues

and learned how to avoid them.

o Data loss: Fixed. The pulse is wide enough that it won’t be missed by domain 2

o Data duplication: Not fixed

o Chip burning: Fixed. We limited the metastability propagation between the synchronizers and reduced

its occurrence frequency.

o In this part we will handle data duplication

metastability

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

Data Duplication

44

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

Data Duplication

45

• Consider the following example : Domain 1 sends a control signal to domain 2 to enable a counter. Each enable means one count up

1. Domain 1 sends a logic “1” to domain 2.

1. The data goes through metastability and settles at “logic 0”.

2. Then finally settles at 1 because the pulse was wide enough.

3. It then safely reach C and cause the counter to increment one count.

2. Domain 1 sends another logic “1” to domain 2.

1. This time the data come out of metastability as “logic 1” which happens to be the correct data.

2. The next cycle we get another “logic 1” because we made the pulse wide to ensure safe capture.

3. The counter gets 2 enable signals causing it to count 2 times while it was intended to count only once.

• This example shows the problem with data duplication even if the two clocks have the same frequency.

• We need to find a way to make domain 2 sees a single cycle pulse for each wide pulse sent by domain 1

1

2

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

Pulse Synchronizer

46

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

Pulse Generator

47

• Consider the circuit on the right:

1. The input changes to logic 1.

The XOR inputs are (In= 1) and (FF/Q= 0) so the (output= 1)

2. The input remains at logic 1. The FF now stores the previous value “1”.

The XOR inputs are (In= 1) and (FF/Q= 1) so the (output= 0)

The output remains “0” as long as the input remains constant.

3. The input changes to logic 0.

The XOR inputs are (In= 0) and (FF/Q= 1) and so the (output= 1)

4. The input remains at logic 0. The FF now stores the previous value “0”.

The XOR inputs are (In= 0) and (FF/Q= 0) so the (output= 0)

The output remains “0” as long as the input remains constant.

• As we can see, this circuit outputs “1” for one cycle whenever the input changes/toggles.

And outputs “0” as long as the input remain constant.

• This circuit is called a pulse generator and will help us deal with the CDC

data duplication issue.

A B XOR

0 0 0

0 1 1

1 0 1

1 1 0

1 2 3 4

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

Data Duplication

48

• Lets analyze the same example we saw earlier but now with the pulse generator added:

1. Domain 1 sends a logic “1” to domain 2.

1. The data goes through metastability and settles at “logic 0”.

2. Then finally settles at 1 because the pulse was wide enough.

3. It then safely reaches the pulse generator. The pulse generator ensures that the pulse

remains 1 for only one cycle as long as the input to remains constant

2. After some time domain 1 sends another enable to domain 2. The enable is sent by toggling the signal to “0”.

1. The data goes through metastability and settles at “logic 0”.

2. The next cycle we get another “logic 0” because we made the pulse wide to ensure safe capture.

3. The pulse generator outputs “logic 1” for only one cycle.

• As you can see the pulse generator fixed the data duplication issue because it converts a wide pulse into a single cycle pulse.

1

2

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

Data Duplication

49

Without Pulse generator With Pulse generator

En1 En2 En1 En21

Notice how En2 in the pulse generator example is a toggle and not logic 1[1] :

En1 En2 En3 En1 En2

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

Edge Synchronizers

50

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

Edge Detector

51

• Consider the circuit on the right:

1. The input changes to logic 1.

The inputs to the AND are In: “1” and FF/Q: “0” so the output: “1”

2. The input remains at logic 1. The FF now stores the previous value “1”.

The AND inputs are In: “1” and FF/Q: “1” so the output: “0”

The output remains “0” as long as the input remains constant.

3. The input changes to logic 0.

The inputs to the AND are In: “0” and FF/Q: “1” and so the output: “0”

4. The input remains at logic 0. The FF now stores the previous value “0”.

The AND inputs are In: “0” and FF/Q: “0” so the output: “0”

The output remains “0” as long as the input remains constant.

• Compared to the pulse generator, this circuit produced a pulse only when the input changed from 0 → 1

while the pulse generator produced a pulse whether the input changed from 0 → 1 or from 1 → 0.

A B Out

0 0 0

0 1 0

1 0 1

1 1 0

1 2 3 4

A

B

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

Pulse Generator vs Edge Detector

52

Pulse Generator Edge Detector

En2.2

A B Out

0 0 0

0 1 0

1 0 1

1 1 0

A

B

A B XOR

0 0 0

0 1 1

1 0 1

1 1 0

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

Edge Detector Types

53

Rising Edge Detection

Active High Output

Rising Edge Detection

Active Low Output

Falling Edge Detection

Active High Output

Falling Edge Detection

Active Low Output

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

Conclusion

54

• We want to know what we solved till now. Our CDC concerns were:

o Data corruption: Partially fixed. The system, till now, can only send 1-bit data. Also, this data has a varying arrival time.

o Data incoherence: Fixed. The metastable value settles within the synchronizers at 0 or 1 and then propagates to all the 2nd domain blocks with the same

settled value

o Data loss: Fixed. The pulse is wide enough that it won’t be missed by domain 2

o Data duplication: Fixed

o Chip burning: Fixed. We limited the metastability propagation between the synchronizers and reduced its occurrence frequency.

• In the next parts we will see how to send a multi-bit signal.

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

References

55

1) https://www.uio.no/studier/emner/matnat/ifi/IN3160/v21/timeplan/in3160-l92-clock-domains.pdf

2) https://ieeexplore.ieee.org/document/1676187

3) https://www.edn.com/keep-metastability-from-killing-your-digital-design/

4) https://people.ece.ubc.ca/~edc/7660.jan2018/lec11.pdf

5) https://www.onsemi.com/pub/Collateral/AN1504-D.PDF

http://www.linkedin.com/in/amradelm

Clock Domain

Crossing
Part 4

Amr Adel Mohammady
/amradelm

/amradelm

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

Introduction

57

• In the previous parts we saw how to send single bit across different clock domains.

• We also saw how to handle data duplication using pulse and edge synchronizers

• Our CDC concerns till now:

o Data corruption: Partially fixed. The system, till now, can only send 1-bit data. Also, this data has a

varying arrival time.

o Data incoherence: Fixed. The metastable value settles within the synchronizers at 0 or 1 and then

propagates to all the domain 2 blocks with the same settled value

o Data loss: Fixed. The pulse is wide enough that it won’t be missed by domain 2

o Data duplication: Fixed. sIf we use pulse/edge synchronizers

o Chip burning: Fixed. We limited the metastability propagation between the synchronizers and reduced

its occurrence frequency.

• In this part we will see how to send multi-bit signal using gray coding

metastability

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

Reconvergence Issue

58

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

Multi Signal Reconvergence in the Receiving Domain

59

• When multiple signals are passed from the sending domain and then converge in the receiving domain, as shown in

the diagram, we may get functional errors due to the difference in the settling time between the two signals.

• Consider the example on the right: Domain 1 sends a 2-bit control signal to domain 2.

Initially we are in IDLE=2’b00

1. Domain 1 sends “2’b11 (WRITE)” to domain 2. The change occurs close to the edge of clk2 causing a

metastability.

2. Signals a2 and b2 leave metastability and settle at different values “2’b10” (READ).

3. The value “2’b10” (READ) is passed to a3 and b3 and then to the combinational logic causing it to go to a

(READ) state while the intended state was (WRITE).

4. The logic receives the correct value (WRITE) later but the damage is already done.

• This example shows the problem with sending multiple signals from one domain to another even with just 2 bits.

• How to solve:

• Converge these signals in the sending domain then send them as one signal to the receiving domain. However,

this is not always possible.

• Use gray encoding to make sure only one signal changes at a time

• Use MUX synchronization scheme to pass these signals as a group (Will be discussed later)

1 2 3 4

a2a1 a3

b2b1 b3

FSM

READ

Write

Write

READ

Write

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

Gray Coding

60

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

Gray Coding

61

• In the previous example we saw how sending multi signals across clock domains can be problematic.

• If we can ensure only one bit changes at a time we can solve the issue because we will either get the current

value or the new value.

• Lets see an example to understand: As the previous example, we want to send a control signal from domain

1 to domain 2. The only difference is we will change the bit assignments. The diagram below shows the

possible state transitions. Initially we are in IDLE=2’b11

1. Domain 1 sends “2’b01 (WRITE)” to domain 2. The change occurs close to the edge of clk2 causing a

metastability. This time, only signals b1 changed while a1 remained stable hence a2 won’t go metastable

2. Signals b2 leave metastability and settle at wrong value “1’b1”.

3. The value “2’b11” (IDLE) is passed to a3 and b3 and then to the combinational logic. The logic still sees

(IDLE) so nothing changes in the system.

4. The logic receives the correct value “2’b01” (WRITE) later and the system enters the correct state.

• Because we ensured only 1 bit changes at a time, domain 2 will either see the old value (IDLE) or the new value

(WRITE). It won’t erroneously enter the (READ) state.

1 2 3 4

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

Gray Coding

62

• Gray code is a binary numbering system where every two adjacent values differ only in one bit.

• These codes are widely used with CDC to avoid functional errors and ensure the receiving domain either get

the old value or the new value and not any other illegal value as we saw in the previous example.

• One of the main uses of gray codes is passing counter values from one domain to another. This will

come in handy soon.

1. The sending domain has a normal binary counter. The counter output goes to a binary to gray encoder.

2. The output is then sent to FFs to protect the synchronizers from combinational glitches.

3. The encoded values pass through the synchronizer then to the gray to binary decoder.

4. Because only one bit changes we ensure the receiving domain will either receive the old count or the new

count.

Decimal
Binary

Code
Gray Code

0 0000 0000

1 0001 0001

2 0010 0011

3 0011 0010

4 0100 0110

5 0101 0111

6 0110 0101

7 0111 0100

8 1000 1100

9 1001 1101

10 1010 1111

Passing Counter Values From one Domain to Another

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

Gray Coding

63

• Using gray codes we managed to send counter values, FSM states or any signal where the transitions are sequential and predictable.

• However, Gray codes can’t be used to send data signals or any signal where the transitions are not sequential. For example, if we are sending decimal

value such as “562” we have no idea what the next sent data will be and we have no ability to ensure the transition to the new value is done with one

bit change.

• In the next part we will discuss how to send data signals or any multi-bit signal that can’t be gray coded.

Counter FSM FSM That Can Be

Gray Coded

FSM That Can’t Be

Gray Coded

http://www.linkedin.com/in/amradelm

Clock Domain

Crossing
Part 5

Amr Adel Mohammady
/amradelm

/amradelm

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

Introduction

65

• In the previous parts we saw how to send single bit across different clock domains.

• We also saw how to handle data duplication using pulse and edge synchronizers

• We then saw how to send multi bit signals using gray coding but that wasn’t enough to send data values.

• Our CDC concerns till now:

o Data corruption: Partially fixed. The system, till now, can only send multi-bit control signals but not

data. Also, this data has a varying arrival time.

o Data incoherence: Fixed. The metastable value settles within the synchronizers at 0 or 1 and then

propagates to all the domain 2 blocks with the same settled value

o Data loss: Fixed. The pulse is wide enough that it won’t be missed by domain 2

o Data duplication: Fixed if we use pulse/edge synchronizers

o Chip burning: Fixed. We limited the metastability propagation between the synchronizers and reduced

its occurrence frequency.

• In this part we will see how to send multi-bit data signal using the mux synchronization scheme

metastability

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

Reconvergence Issue

66

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

Multi Signal Reconvergence in the Receiving Domain

67

• When multiple signals are passed from the sending domain and then converge in the receiving domain, as shown in

the diagram, we may get functional errors due to the difference in the settling time between the two signals.

• Consider the example on the right: Domain 1 sends a 2-bit control signal to domain 2.

Initially we are in IDLE=2’b00

1. Domain 1 sends “2’b11 (WRITE)” to domain 2. The change occurs close to the edge of clk2 causing a

metastability.

2. Signals a2 and b2 leave metastability and settle at different values “2’b10” (READ).

3. The value “2’b10” (READ) is passed to a3 and b3 and then to the combinational logic causing it to go to a

(READ) state while the intended state was (WRITE).

4. The logic receives the correct value (WRITE) later but the damage is already done.

• This example shows the problem with sending multiple signals from one domain to another even with just 2 bits.

• How to solve:

• Converge these signals in the sending domain then send them as one signal to the receiving domain. However,

this is not always possible.

• Use gray encoding to make sure only one signal changes at a time (Discussed before)

• Use MUX synchronization scheme to pass these signals as a group (Will be discussed now)

1 2 3 4

a2a1 a3

b2b1 b3

FSM

READ

Write

Write

READ

Write

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

MUX Synchronizer

68

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

MUX Synchronizer

69

• The MUX synchronizer is one of the methods to pass multiple signals across clock domains.

• It consists of two parts:

• The data part that goes directly to domain 2 without passing through synchronizers

• An enable signal that pass through synchronizers then to domain 2 and is used to enable domain 2 to read the data of domain 1

Enable

DATA

En

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

MUX Synchronizer

70

• The MUX Synchronizer works as follows:

1. Domain 1 launches both the data and the enable signal to domain 2. The data goes

directly to the MUX while the enable signal goes through the synchronizers

2. -The data reaches the MUX and waits for the select to be “1” to reach FF3.

-The MUX in front of FF3 still has select = “0”, so the D pin sees the old stored value

inside FF3 and therefore FF3 won’t go metastable.

-At the same time the enable signals goes through the syncs and cause metastability

3. -After some time the enable signal reaches domain 2 and then the MUX.

-The data now propagates through the MUX to FF3/D.

-This propagation is controlled by the enable signal which is a synchronous signal

within domain 2. This signal can be analyzed in STA to make sure FF3/D won’t

change near a clock edge and won’t cause setup or hold violations.

4. The data is captured by FF3

1 2 3 4

Enable

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

Why Does It Work?

71

Enable

DATA

En

• We are concerned that data from FF1 might reach FF3 during its setup/hold window, potentially causing metastability.

• Lets ask: Will this happen under this structure?

• The enable signal acts as a gate for the data, preventing it from reaching FF3 until the enable signal arrives.

• The enable signal is a timing path from clk2 to clk2, which can be analyzed using Static Timing Analysis (STA).

• STA ensures that the enable signal does not arrive (the gate doesn’t open) during the metastability window.

• Therefore also the data will not arrive (pass the gate) during the metastability window.

• This needs an important assumption1: That by the time the enable reaches the MUX, the data should’ve arrived and is stable in front of the MUX

Clk2-Clk2 Path

𝑇ℎ𝑜𝑙𝑑

When En arrives,

Data Arrives

𝑇𝑠𝑒𝑡𝑢𝑝

This assumption need to be enforced with a max delay constraint[1] :

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

MUX Synchronizer – Data Pulse Width

72

• For how long do we need to hold data stable to ensure safe capture by the receiving domain?

o Most resources don’t discuss this. Very few mention it’s N+1 clk2 cycles where N is the number of

sync FFs, but this can be shown to risk metastability1. The analysis below is my own and you are

advised to take it with a grain of salt.

o We have two concerns:

1. We don’t want the data to change before the enable signal arrives. Otherwise, the data won’t

be captured by domain 2 (The assumption from the previous slide)

2. We don’t want the data to change as long as the enable signal is high. Otherwise, the MUX

will pass any asynchronous event from domain 1 to domain 2 and cause metastability.

o To handle these concerns we need to consider the worst case:

1. In the first clk2 cycle, the synchronizers goes metastable and

settle at “0” instead of “1”.

2. After two (N) clk2 cycles, the enable becomes “1”.

At the same time, domain 1 lowers the enable signal, the change

causes metastability and the synchronizers settle at “1” instead

of “0”.

3. After one clk2 cycle + the delay from the sync to the MUX,

the enable goes low “0”. Any change in FF1/Q won’t reach FF3/D

• We can assume2 the sync->MUX delay = 0.5 clk2 cycle.

So If we have N number of synchronizers then the data must be

held for N+2.5 clk2 cycles

N+1 will work if we use pulse syntonizers. See next slide[1] :

This assumption need to be enforced with a max delay constraint[2] :

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

MUX Synchronizer With Pulse Synchronizer – Data Pulse Width

73

• Using a pulse synchronizer can shorten the requirement to N+1.5 cycles instead of N+2.5 cycles.

• This is because the pulse synchronizer will cause the enable to be active for one cycle instead of 2 (see red arrows).

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

Mux Synchronizers - Handshake

74

• Most designs combine the MUX synchronizer scheme with a handshake loop, where the sending domain keeps holding the data until the receiving domain

responds with an acknowledgment signal that it has successfully captured the data.

• This has several benefits over the previous approach:

o It ensures reliable data transfer. We only change the data when we receive a confirmation it was safely captured. So no need for the previous analysis

o It allows the receiving domain to delay the transfer if it’s not ready to accept it.

• The operation goes as follows1:

1. Domain 1 sends a request/enable signal to domain 2 through FF syncs and

at the same time it launches the data to domain 2.

2. Domain 1 will keep holding the data and request signals until it receives

an acknowledgment

3. After a while, domain 2 receives the request. If it’s ready to accept it, it will capture

the data sent from domain 1 and send an acknowledgment back through FF syncs.

If it’s not ready it will keep the ack signal low.

4. After a while, domain 1 receives the acknowledgment and lowers the request signal

You can watch an animation of this scheme here : https://lnkd.in/e3mb4D57[1] :

http://www.linkedin.com/in/amradelm
https://lnkd.in/e3mb4D57

/amradelm

/amradelm

Mux Synchronizers – Disadvantage

75

• The main disadvantage of the MUX synchronizer scheme is that it doesn’t allow domain 1 to send data every clock cycle

• Instead, we hold the data stable for some time waiting for it to be captured and also waiting for an ack signal.

• This latency makes MUX schemes not suitable for designs that require high-speed processing.

• In the next part we will study another CDC method that can handle high-speed requirements.

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

References

76

1) http://www.sunburst-design.com/papers/CummingsSNUG2008Boston_CDC.pdf

2) https://www.uio.no/studier/emner/matnat/ifi/IN3160/v21/timeplan/in3160-l92-clock-domains.pdf

3) https://ieeexplore.ieee.org/document/1676187

4) https://www.edn.com/keep-metastability-from-killing-your-digital-design/

5) https://people.ece.ubc.ca/~edc/7660.jan2018/lec11.pdf

6) https://www.onsemi.com/pub/Collateral/AN1504-D.PDF

http://www.linkedin.com/in/amradelm

Clock Domain

Crossing
Part 6 – CDC FIFO

Amr Adel Mohammady
/amradelm

/amradelm

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

Introduction

78

• In the previous parts we saw how to send multi-bit data signal using the

mux synchronization scheme.

• Our issue with that scheme is that it’s slow since it requires a handshake

• Our CDC concerns till now:

o Data corruption: Partially fixed. The system can send multi-bit control

signals and data but in a slow manner

o Data incoherence: Fixed. The metastable value settles within the

synchronizers at 0 or 1 and then propagates to all the domain 2 blocks

with the same settled value

o Data loss: Fixed. The pulse is wide enough that it won’t be missed by

domain 2

o Data duplication: Fixed if we use pulse/edge synchronizers

o Chip burning: Fixed. We limited the metastability propagation between

the synchronizers and reduced its occurrence frequency.

• In this part we will see how to send multi-bit data signal using the CDC

FIFO scheme

CDC Handshake Protocol

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

Introduction

79

• The asynchronous FIFO is perhaps the most common way to send data across clock domains.

• The asynchronous FIFO consists of:

o A circular FIFO

o Binary to Gray encoder and Gray to binary decoder.

o Flip-Flop synchronizers

o Comparators

• In the next slides we will talk about each part in detail.
FIFO

CDC FIFO

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

First-In First-Out Buffer
(FIFO)

80

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

FIFO Structure

81

• Circular FIFO is implemented using a fixed-size buffer (array) with two pointers: one for the read position (read pointer) and one for the write position (write pointer).

• When the write pointer reaches the end of the buffer, it wraps around to the beginning of the buffer, continuing to write data in a circular fashion. The same applies to

the read pointer when reading data.

• Circular FIFO follows the First-In-First-Out principle, meaning that the first data written into the buffer is the first data read out.

• You can watch an animation of the FIFO operation here : https://lnkd.in/ezJMAtbG

Empty FIFO 3 Entries Written

0 Entries Read

5 Entries Written

3 Entries Read

9 Entries Written

3 Entries Read

http://www.linkedin.com/in/amradelm
https://lnkd.in/ezJMAtbG

/amradelm

/amradelm

Empty And Full Conditions

82

• Underflow occurs when the buffer is empty, and a read operation is attempted. This can be managed by stopping reads when the buffer is empty.

• Overflow occurs when the buffer is full, and new data tries to overwrite unread data. This can be managed by stopping writes when the buffer is full.

• The question now is: how to determine if the FIFO is empty or Full?

• From the 2 diagrams below we can see that when the two pointers are equal if the FIFO is either empty or full but we can’t tell which.

o The full condition happens when the write pointer wraps around and is a complete cycle ahead of the read pointer.

o If there is a flag that indicates wrapping around, we will be able to tell if the FIFO is empty or full

o The conditions are therefore:

o Empty : Pointers are equal and wrap flags are also equal.

o Full : Pointers are equal and wrap flags are not equal.

Empty FIFO Full FIFO

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

Empty And Full Conditions Implementation

83

• To implement the write and read pointer with the added flag you have to do

the following when the pointer reaches the max value (the end):

o Reset the pointer

o Toggle the flag

• If the FIFO depth is a power of 2 you don’t need to create additional logic to handle

the resetting and toggling.

• That’s because once the pointer reaches the max value it will overflow and thus

automatically reset the pointer and toggle the most significant bit (MSB)

0 000

0 001

0 010

0 011

0 100

1 000

1 001

1 010

1 011

1 100

0 000

0 000

0 001

0 010

0 011

0 100

0 101

0 110

0 111

1 000

5-Deep FIFO

8-Deep FIFO

Ptr PtrFlagFlag

5

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

Gray Encoder And Decoder

84

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

Binary to Gray Encoder

85

• Gray code is a binary numeral system where two successive values differ in only one

bit.

• To convert a binary number to its corresponding Gray code:

o The most significant bit (MSB) of the Gray code is the same as the MSB of the

binary input.

o Each subsequent Gray code bit is derived by XOR-ing the corresponding binary

bit with the next higher-order binary bit.

o Example: If binary_in is 3'b101 (binary), then:

▪ gray_out[2] = binary_in[2] = 1

▪ gray_out[1] = binary_in[2] ^ binary_in[1] = 1 ^ 0 = 1

▪ gray_out[0] = binary_in[1] ^ binary_in[0] = 0 ^ 1 = 1

▪ So, gray_out will be 3'b111 (Gray code).

4-Bit Binary to Gray

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

Gray to Binary Decoder

86

• To convert a Gray Code to its corresponding binary code:

o The most significant bit (MSB) of the Gray code is the same as the MSB of the

binary input.

o Each subsequent binary bit is derived by XOR-ing the previous binary bit with the

corresponding Gray code bit.

o Example: If gray_in is 3’b111 (Gray), then:

▪ binary_out[2] = gray_in[2] = 1

▪ binary_out[1] = binary_out[2] ^ gray_in[1] = 1 ^ 1 = 0

▪ binary_out[0] = binary_out[1] ^ gray_in[0] = 0 ^ 1 = 1

▪ So, binary_out will be 3’b101 (binary code).

4-Bit Gray to Binary

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

Verilog Code

87

module gray_to_binary #(

 parameter N = 3 // Parameter to define the bit-width,

default is 3

)(

 input [N-1:0] gray_in, // N-bit Gray code input

 output [N-1:0] binary_out // N-bit binary output

);

 // Internal wire to store intermediate results

 wire [N-1:0] binary_temp;

 // Assigning the MSB directly as it remains the same

 assign binary_temp[N-1] = gray_in[N-1];

 // Loop to calculate the binary output from Gray code

 genvar i;

 generate

 for (i = N-2; i >= 0; i = i - 1) begin : gray_to_bin

 assign binary_temp[i] = binary_temp[i+1] ^

gray_in[i];

 end

 endgenerate

 // Assign the result to output

 assign binary_out = binary_temp;

endmodule

module binary_to_gray #(

 parameter N = 3 // Parameter to define the bit-width,

default is 3

)(

 input [N-1:0] binary_in, // N-bit binary input

 output [N-1:0] gray_out // N-bit Gray code output

);

 // Assigning the MSB directly as it remains the same

 assign gray_out[N-1] = binary_in[N-1];

 // Loop to calculate the Gray code output from binary

 genvar i;

 generate

 for (i = N-2; i >= 0; i = i - 1) begin : bin_to_gray

 assign gray_out[i] = binary_in[i+1] ^ binary_in[i];

 end

 endgenerate

endmodule

Binary to Gray Gray to Binary

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

CDC FIFO

88

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

CDC FIFO

89

• Write Interface (Write Logic)

o Function: The write interface is responsible for writing data into the FIFO. It operates in the write clock domain (write_clk).

o Components:

▪ Write Pointer (write_ptr): Tracks the position in the FIFO where the next data element will be written.

▪ Write Enable Signal: Controls when data can be written to the FIFO, typically asserted when the FIFO is not full.

▪ Write Data (data_in): The actual data to be written into the FIFO.

o Process: Each time a write operation occurs (triggered by the write clock), the data is stored at the location indicated by the write pointer, and the write pointer is

incremented.

• Read Interface (Read Logic)

o Function: The read interface is responsible for reading data out of the FIFO. It operates in the read clock domain (read_clk).

o Components:

▪ Read Pointer (read_ptr): Tracks the position in the FIFO from where the next data element will be read.

▪ Read Enable Signal: Controls when data can be read from the FIFO, typically asserted when the FIFO is not empty.

▪ Read Data (data_out): The data read from the FIFO, presented to the output.

o Process: Each time a read operation occurs (triggered by the read clock), the data is read from the location indicated by the read pointer, and the read pointer is

incremented.

• An animation of the operation can be found here : https://lnkd.in/ezUCAx9a

http://www.linkedin.com/in/amradelm
https://lnkd.in/ezUCAx9a

Domain 1 Domain 2

Write

Pointer

Read

Pointer

Empty

Flag?

Full

Flag?

0 0

0000 0000 0000 0000

0000 0000 0000 0000

Domain 1 Domain 2

Write

Pointer

Read

Pointer

Empty

Flag?

Full

Flag?

0 0

0000 0000 0000 0000

0000 0000 0000 0000

Domain 2 won’t

read any data as

long as the empty

flag is high

Domain 1 Domain 2

Write

Pointer

Read

Pointer

Empty

Flag?

Full

Flag?

1 0

0001 0001 0000 0000

0000 0000 0000 0000

The flag is still high

although domain 1 wrote

an entry.

This is due to the latency

through the syncs.

domain 1 wrote

an entry

Domain 1 Domain 2

Write

Pointer

Read

Pointer

Empty

Flag?

Full

Flag?

0 0

1000 1100 1100 1000

0000 0000 0000 0000
Domain 1 won’t write

any data as long as

the full flag is high

Domain 1 Domain 2

Write

Pointer

Read

Pointer

Empty

Flag?

Full

Flag?

0 1

1000 1100 1100 1000

0000 0000 0001 0001
The flag is still high

although domain 2

read an entry.

This is due to the

latency through the

syncs.

Domain 2 read

an entry

Domain 1 Domain 2

Write

Pointer

Read

Pointer

Empty

Flag?

Full

Flag?

1 3

1001 1100 1100 1000

0011 0010 0010 0011

Domain 2 read

another 2 entries

Domain 1 wrote a

new entry.

Write and read can happen simultaneously

/amradelm

/amradelm

FIFO Depth

96

• FIFO depth is crucial to prevent data overflow (when the FIFO is too shallow) or underutilization (when the FIFO is too deep) .

• The data arrives in bursts (periods of high activity followed by inactivity), the FIFO must be deep enough to hold all the burst data until it can be processed.

• If the write domain writes N data samples within time T and the read domain reads M data samples within the same time we end up with N-M samples that need to

be stored in the FIFO.

• For example if the write domain is 3 times faster than the read domain. For every 3 samples written the slow domain will be able to read only one sample.

• If the write domain write a burst of N samples. The read domain will only read
𝑁

3
 samples leaving

2𝑁

3
 samples that need to be stored

• The size is therefore calculated as

𝐷𝑒𝑝𝑡ℎ = 𝐵𝑢𝑟𝑠𝑡 − 𝐵𝑢𝑟𝑠𝑡 ×
𝑓𝑟𝑒𝑎𝑑

𝑓𝑤𝑟𝑖𝑡𝑒

𝐷𝑒𝑝𝑡ℎ = 𝐵𝑢𝑟𝑠𝑡 × 1 −
𝑓𝑟𝑒𝑎𝑑

𝑓𝑤𝑟𝑖𝑡𝑒

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

FIFO Depth - Examples

97

https://shorturl.at/qBrGl

• Let 𝒇𝒘𝒓𝒊𝒕𝒆 = 𝟒𝟎𝟎 𝑴𝑯𝒛, 𝒇𝒓𝒆𝒂𝒅 = 𝟏𝟓𝟎 𝑴𝑯𝒛. Burst size = 120. There are no idle cycles between consecutive writes or read operations.

• 𝐷𝑒𝑝𝑡ℎ = 𝐵𝑢𝑟𝑠𝑡 1 −
𝑓𝑟𝑒𝑎𝑑

𝑓𝑤𝑟𝑖𝑡𝑒
= 120 1 −

150

400
= 75 location.

• The size rounded to power of 2 = 128 locations.

• Let 𝒇𝒘𝒓𝒊𝒕𝒆 = 𝟒𝟎𝟎 𝑴𝑯𝒛, 𝒇𝒓𝒆𝒂𝒅 = 𝟏𝟓𝟎 𝑴𝑯𝒛. Burst size = 120. There is 1 idle cycle between consecutive writes.

• The idle cycle will slow down the writing operation giving the read operation more time to read. We should expect the required size to decrease

• With the idle cycle, the write domain takes 2 cycles for each write instead of 1. Effectively the frequency is halved.

• 𝐷𝑒𝑝𝑡ℎ = 𝐵𝑢𝑟𝑠𝑡 1 −
𝑓𝑟𝑒𝑎𝑑

𝑓𝑤𝑟𝑖𝑡𝑒/𝟐
= 120 1 −

150

400/2
= 30 location.

• The size rounded to power of 2 = 32 locations.

• More examples can be found in this document by Putta Satish : https://shorturl.at/qBrGl

http://www.linkedin.com/in/amradelm
https://shorturl.at/qBrGl

/amradelm

/amradelm

References

98

1) http://www.sunburst-design.com/papers/CummingsSNUG2008Boston_CDC.pdf

2) https://www.uio.no/studier/emner/matnat/ifi/IN3160/v21/timeplan/in3160-l92-clock-domains.pdf

3) https://ieeexplore.ieee.org/document/1676187

4) https://www.edn.com/keep-metastability-from-killing-your-digital-design/

5) https://people.ece.ubc.ca/~edc/7660.jan2018/lec11.pdf

6) https://www.onsemi.com/pub/Collateral/AN1504-D.PDF

http://www.linkedin.com/in/amradelm

Clock Domain

Crossing
Part 7 – Timing Constraints

Amr Adel Mohammady
/amradelm

/amradelm

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

Introduction

100

• In the previous parts we went through all the CDC solutions and schemes.

• In this part we will discuss the timing constraints associated with these schemes.

• We mentioned that CDC paths are asynchronous and therefore can’t be analyzed with static timing analysis. ‘

• That’s why, in the past, the most common approach was applying false paths on CDC paths. We will see how that may lead to major issues.

• It turns out we still need some timing constraints to enforce some assumptions we made when designing the CDC circuit

CDC Handshake Protocol CDC FIFOCDC Synchronizers

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

1st (Trial) Solution :

Apply False Path

101

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

What is a False Path?

• False paths are timing paths that can’t possibly occur due to the logic of the circuit

• Consider the example below:

o Both muxes have the same select signal. This means we have 2 possible timing paths. The one going through both red logics (200 + 300 = 500𝑝𝑠) and

the one going through both blue logics (100 + 500 = 600𝑝𝑠)

o The paths going through a red logic then a blue logic (200 + 500 = 700𝑝𝑠) or blue logic then red logic (100 + 300 = 400𝑝𝑠) is impossible to happen.

o Unless we instruct the tool to ignore these false paths, they will be considered for timing analysis leading to the large 𝑇𝑐𝑜𝑚𝑏 of the red to blue path which

will violate setup.

102

0 0

1 1

sel

200𝑝𝑠

100𝑝𝑠 500𝑝𝑠

300𝑝𝑠

𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑝𝑎𝑡ℎ𝑠

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

What Would Happen With A False Path Constraint?

• Applying false path will make the tool ignore the timing of the paths and therefore may create unnecessary delay that breaks our CDC circuit.

o The tool might:

▪ Place the launch and capture FF far apart.

▪ Create unnecessarily long routes.

▪ Add unnecessary buffers in the routes.

▪ Use slow cells/FFs to save power.

o We will see how this may break our CDC circuits. We will consider 2 examples

▪ CDC Mux

▪ CDC Gray Coding

103

Possible Schematic of a very relaxed Path

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

CDC Mux Scheme And False Path

104

Let's review the CDC MUX scheme1:

• The data goes directly to the Rx domain MUX
• The enable goes to the Rx domain through FF

synchronizers

1 • The data reaches the MUX quickly since no FF

exist in the way.
• The enable is still going through the FF syncs

2 • After some time, the enable arrives at the MUX

and opens the gate for the data.
• Since the enable is synchronized, it's

guaranteed with STA that the gate will open

without violating setup or hold time and
therefore the data won't cause metastability

3

EN

D D D

EN

EN

You can watch an animation of this here : https://lnkd.in/en-iuNPx[1] :

http://www.linkedin.com/in/amradelm
https://lnkd.in/en-iuNPx

/amradelm

/amradelm

CDC Mux Scheme And False Path

105

Now let’s consider the faulty behavior with a

false path constraint applied1

• The data goes to the Rx domain MUX

• The enable goes to the Rx domain through FF

synchronizers

1 • The data takes a long time to reach the MUX

due to the logic delay.
• The enable reaches the MUX and opens the

gate

2 • After some time, the data arrives at the MUX

after the enable.
• The data is a domain 1 signal arriving at

domain 2 FF. Metastability happens

3

EN

D

D

D

EN EN

Metastability!

You can watch an animation of this here : https://lnkd.in/en-iuNPx[1] :

http://www.linkedin.com/in/amradelm
https://lnkd.in/en-iuNPx

/amradelm

/amradelm

CDC Gray Coding And False Path

106

Now let’s see the faulty behavior with CDC Gray coding

• Initially the Rx sees gray code 110 (decimal 4)
• After that we send gray code 111 (decimal 5)

1 • We then send gray code 101 (decimal 6)

• Due to the long delay on the LSB line, the logic “1” from decimal 5 didn’t
reach the Rx yet.

• Now the Rx sees two bit changing and may jump to wrong count

2

You can watch an animation of this here : https://lnkd.in/ejkpFvZR[1] :

5 4

1

1

1

1

1

0

6 4

1

0

1

1

1

01

Multiple bits are changing at the same time.
The Gray code is violated

http://www.linkedin.com/in/amradelm
https://lnkd.in/ejkpFvZR

/amradelm

/amradelm

2nd (Trial) Solution :

Don’t Apply False Path

107

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

What Could Happen Without a False Path Constraints?

• By default, the tool will assume the 2 CDC clocks are synchronous and will run STA on any path between them.

• This will lead to one of 2 issues:

o If the clock skew between the 2 clocks is small, the path will be very tight and won’t meet timing. The synthesis and PnR tools will spend a lot of effort trying

to fix the path1.

o If the clock skew between the 2 clocks is large, the path will be relaxed and may meet timing with a large setup margin.

▪ The tool might add delay (for example, to save power)

▪ We get the same issue of applying a false path constraint

108

Small Skew Case

𝑇𝑙𝑎𝑢𝑛𝑐ℎ_𝑒𝑑𝑔𝑒

𝑇𝑐𝑎𝑝𝑡𝑢𝑟𝑒_𝑒𝑑𝑔𝑒

𝑇𝑐𝑞

𝑇𝑐𝑜𝑚𝑏

𝑇𝑠𝑒𝑡𝑢𝑝

Large Skew Case

𝑇𝑙𝑎𝑢𝑛𝑐ℎ_𝑒𝑑𝑔𝑒

𝑇𝑐𝑎𝑝𝑡𝑢𝑟𝑒_𝑒𝑑𝑔𝑒

𝑇𝑐𝑞

𝑇𝑐𝑜𝑚𝑏

𝑇𝑠𝑒𝑡𝑢𝑝

The tools ignore less critical paths and focus on the critical ones. This will lead to real paths being masked by
fake CDC violations

[1] :

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

3rd (Correct) Solution :
Skew Constraint

109

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

What is A Skew Constraint

• Skew checks constraint the arrival difference between 2 signals or more.

• In the example below we have a data bus of 4 bits. The bits should arrive close to each other with a difference no more than 3ns. This means the difference

between the latest bit to arrive and the earliest bit to arrive shouldn’t exceed 3ns.

• To fix skew violations we need to speed up slow signals and/or slow down fast ones.

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

CDC Gray Coding And Skew Constraint

111

Without A Skew Constraint With A Skew Constraint

Buffers are added by the tool on the other
paths to balance with the LSB route delay.

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

The Issue With This Approach

• The main issue with this approach is that it needs lots of manual efforts

• If we have multiple CDC paths, we need to identify each group of signals and add skew constraints for them

• We will try another easier approach

112

Group 1

Group 4

Group 2

Group 5

Group 3

Group 6

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

4th (Best) Solution :
Max Delay Constraint

113

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

Max and Min Delays

• Sometimes we want to control the arrival time of a signal.

• In the example below, it’s required that signal A arrives at the memory block no eariler than 10ns and no later than 30ns after the clock edge.

• To constraint signal A to follow this requirement we need to apply a min delay constraint of 10ns and a max delay of 30ns1.

https://docs.amd.com/r/2021.2-English/ug903-vivado-using-constraints/Min/Max-DelaysMore details :

Don’t apply the constraint from the Q pin of the FF but from the CK pin. Otherwise, the setup and hold timing paths of
the FF will be broken

[1] :

http://www.linkedin.com/in/amradelm

/amradelm

/amradelm

Max Delay Constraint

• The best approach is to add a max delay constraint with an amount small enough that the CDC paths are not broken

• What makes this approach easy is that it can applied to all CDC paths with one line1 so it doesn’t need manual work:

• pt_shell> set_max_delay 4.0 -from CLK1 -to CLK2

• What remains now is what value to use for the max delay constraint.

o In some cases, we need to apply the Tx clock period

o In other cases, we need to apply the Rx clock period

o In other cases, we need to apply multiple clock periods.

o We will use the worst case (smallest) instead of applying a specific max delay

value for each

• The value used for max delay might be too tight for some CDC paths. In that case,

we can resort to skew constraint

≤ 𝟒 𝒏𝒔

≤ 𝟒 𝒏𝒔

≤ 𝟒 𝒏𝒔

In some tools, the max delay constraint overwrites the setup constraints, but in others, it won ’t.
Depending on your tool, you might need to first apply a false path on the setup constraint then apply the max
delay constraint : Timing constraints for clock-domain crossings. #sta #cdc (github.com)

[1] :

http://www.linkedin.com/in/amradelm
https://gist.github.com/brabect1/7695ead3d79be47576890bbcd61fe426

/amradelm

/amradelm

References

116

1) https://gist.github.com/brabect1/7695ead3d79be47576890bbcd61fe426

2) Y. Mirsky, O. Tsarfaty, D. Stein, & O. Winner, “Timing Analysis of Unconstrained Clock Domain Crossings – the Need and the Method,”

3) O. Dasa, Y. Mirsky “A New Approach to Easily Resolve the Hidden Timing Dangers of False Path Constraints on Clock Domain Crossings”

http://www.linkedin.com/in/amradelm
https://gist.github.com/brabect1/7695ead3d79be47576890bbcd61fe426

/amradelm

/amradelm

Thank You!

117

http://www.linkedin.com/in/amradelm

	Slide 1: Clock Domain Crossing Amr Adel Mohammady
	Slide 2: Save The Palestinian Children
	Slide 3: Clock Domain Crossing Part 1
	Slide 4: Content
	Slide 5: Introduction
	Slide 6: Metastability in Sequential Circuits
	Slide 7: Flip Flop Internal Operation
	Slide 8: Setup Time
	Slide 9: Hold Time
	Slide 10: Metastability
	Slide 11: Metastability in Sequential Circuits
	Slide 12: Metastability in Sequential Circuits
	Slide 13: Clock Domains
	Slide 14: CDC Concerns
	Slide 15
	Slide 16: Mean Time Between Failure
	Slide 17: MTBF Derivation
	Slide 18: MTBF Derivation
	Slide 19: MTBF Calculations – Example
	Slide 20: MTBF Calculations – Example
	Slide 21: MTBF Calculations – Example
	Slide 22: MTBF Calculations – Two Flip Flops
	Slide 23: How to Increase the MTBF
	Slide 24: Conclusion
	Slide 25: References
	Slide 26: Clock Domain Crossing Part 2
	Slide 27: Introduction
	Slide 28
	Slide 29: Required Pulse Width
	Slide 30: Required Pulse Width – Examples
	Slide 31: Required Pulse Width
	Slide 32: The Issue of Varying Delays/Settling Time
	Slide 33
	Slide 34: FF Synchronizer Rules
	Slide 35: Convergence in The Sending Domain / Combinational in Sync Fan-in
	Slide 36: Multi Clock Fan-in
	Slide 37: Divergence in the Sending Domain
	Slide 38: Divergence of a Metastable Signal
	Slide 39: Multi Signal Reconvergence in the Receiving Domain
	Slide 40: Conclusion
	Slide 41: References
	Slide 42: Clock Domain Crossing Part 3
	Slide 43: Introduction
	Slide 44
	Slide 45: Data Duplication
	Slide 46
	Slide 47: Pulse Generator
	Slide 48: Data Duplication
	Slide 49: Data Duplication
	Slide 50
	Slide 51: Edge Detector
	Slide 52: Pulse Generator vs Edge Detector
	Slide 53: Edge Detector Types
	Slide 54: Conclusion
	Slide 55: References
	Slide 56: Clock Domain Crossing Part 4
	Slide 57: Introduction
	Slide 58
	Slide 59: Multi Signal Reconvergence in the Receiving Domain
	Slide 60
	Slide 61: Gray Coding
	Slide 62: Gray Coding
	Slide 63: Gray Coding
	Slide 64: Clock Domain Crossing Part 5
	Slide 65: Introduction
	Slide 66
	Slide 67: Multi Signal Reconvergence in the Receiving Domain
	Slide 68
	Slide 69: MUX Synchronizer
	Slide 70: MUX Synchronizer
	Slide 71: Why Does It Work?
	Slide 72: MUX Synchronizer – Data Pulse Width
	Slide 73: MUX Synchronizer With Pulse Synchronizer – Data Pulse Width
	Slide 74: Mux Synchronizers - Handshake
	Slide 75: Mux Synchronizers – Disadvantage
	Slide 76: References
	Slide 77: Clock Domain Crossing Part 6 – CDC FIFO
	Slide 78: Introduction
	Slide 79: Introduction
	Slide 80
	Slide 81: FIFO Structure
	Slide 82: Empty And Full Conditions
	Slide 83: Empty And Full Conditions Implementation
	Slide 84
	Slide 85: Binary to Gray Encoder
	Slide 86: Gray to Binary Decoder
	Slide 87: Verilog Code
	Slide 88
	Slide 89: CDC FIFO
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96: FIFO Depth
	Slide 97: FIFO Depth - Examples
	Slide 98: References
	Slide 99: Clock Domain Crossing Part 7 – Timing Constraints
	Slide 100: Introduction
	Slide 101
	Slide 102: What is a False Path?
	Slide 103: What Would Happen With A False Path Constraint?
	Slide 104: CDC Mux Scheme And False Path
	Slide 105: CDC Mux Scheme And False Path
	Slide 106: CDC Gray Coding And False Path
	Slide 107
	Slide 108: What Could Happen Without a False Path Constraints?
	Slide 109
	Slide 110: What is A Skew Constraint
	Slide 111: CDC Gray Coding And Skew Constraint
	Slide 112: The Issue With This Approach
	Slide 113
	Slide 114: Max and Min Delays
	Slide 115: Max Delay Constraint
	Slide 116: References
	Slide 117

