Q ’T (E,
°‘I_‘|;F—':

—_——

OQICtronix

Reference Tutorial on

Video Processing Subsystem (VPSS)
Feature Implementation on

Digilent PYNQ-Z1

Vitis and VIVADO Design Suite-2020.1

August 13, 2020

For any Queries: mail us at info@logictronix.com or visit www.logictronix.com

mailto:info@logictronix.com
http://www.logictronix.com/

algf,o logictronix
- PYNQ Z1 Video Processing Subsystem Feature Implementation

CHAPTER 1: INTRODUCTION
OVERVIEW

This project design document is based on the implementation of Video Processing Subsystem
on Digilent PYNQ-Z1 board along Vivado Design Suite 2020.1. This project uses Xilinx Video Test
Pattern Generator IP as the AXI4 video source for Video Processing Subsystem IP. The resulting
video stream goes all the way through series of video processing IPs to board output HDMI

interface and to HDMI monitor. The following picture depicts the general project overview.

Zynq-7020 APSoC FPGA

Test Video
Pattern = —> Processing
Generator Subsystem

DDR3
Memory
Zynq Host

Processor

HDMI
AXI4 to HDMI HDMI Video
Video out Interface Connector Out

Figure 1. Project Overview Block Diagram

This document mainly focuses on the Scalar, Color Space Conversion (CSC) and Frame Rate
Conversion (FRC) features of Video Processing Subsystem. This document approaches along
following sections, namely, Board overview, Video Processing Subsystem IP Overview, Design
Flow and Final Output. Under design flow section, the hardware design and the software design

will be explained. Under final output section, all the features output will be documented.

Page 1 of 70

n—I"T;;;‘;o logictronix

PYNQ Z1 Video Processing Subsystem Feature Implementation

BOARD OVERVIEW

ZYNQ
HDMI 12 Pin Zc7Z2020-1CLG400C
Ouptut and Input Pmod Expansion (2) éci?tg"‘:’gd};‘f;:e‘:’;r, DDR3 Memory

Controller, High bandwidth periperhal
/ \ controllers, 1G Ethernet, USB, SDIO,
Low bandwidth peripehrals, SPI,
UART, CAN, I2C
E - FPGA Equivelant of Artix 7 FPGA
N R | . N
Tt A 44 R, 2. 13,300 Logic Slices, 630 KB of fast
) - l:j: block RAM, 220 DSP slices, on chip
Analog to Digital Converter (XADC), &
4 clock management tiles.

Progamming
Switching Jumper

USB-UART _ &
USB-JTAG Programming =)
Ethernet
GB Ethernet PHY
Dual row
Electret chipKIT/Arduino
S & H
Microphone —= o == eaders
PWM driven mono i |
audio output
(3.5 mm jack)
ISSI

S43TR16256A-125KBL
DDR3 Memory

16 bit wide interface and a total of
512 MiB capacity.
LED (4) pacity

Power- barrel jack input
7-15V

. Push Buttons (4)
Switch for Power Select
Slide Switch (2) REBILED()
Tl Power
TPS65400

Intergrated switching
power management unit

Foo0o0oeee Heseaee X
200 coeT

16 MB of Flash

Micro SD Card || TN

Slot : - W

3.46 inches

4.88 inches

Figure 2. Digilent Pyng-Z1 Board [Source: Digilent, Inc.]

o, . .
- logictronix

PYNQ Z1 Video Processing Subsystem Feature Implementation

PYNQ is an open-source project which allow to use Python language and libraries on the FPGA
device. Designers can exploit the benefits of programmable logic and microprocessors to build
more capable and exciting electronic systems [1]. PYNQ allow to combine the productivity of

the Python programming language with the flexibility of the Xilinx Zynq architecture [2].

That is, Python + Zynq=Pynq.

Figure 3. PYNQ

From a hardware perspective, this board is a very powerful board, featuring a ZYNQ 7020 APSoC,
high-speed peripherals, 512MB DDR3 Memory, HDMI sink port, HDMI source port as well as

Pmod and Arduino expansion possibilities.

PYNQ can be used with Zynq, Zynq UltraScale+, Zynq RFSoC, Alveo accelerator boards and AWS-

F1 to create high performance applications with:

e high frame-rate video processing
e hardware accelerated algorithms
e real-time signal processing

e low latency control

Page 3 of 70

loQictronix

PYNQ Z1 Video Processing Subsystem Feature Implementation

VIDEO PROCESSING SUBSYSTEM IP OVERVIEW

According to Xilinx, the Video Processing Subsystem is one of Xilinx LogiCORE IP, made from

Vivado HLS, is a collection of video processing IP subcores, bundled together in hardware and

software, abstracting the video processing pipe. It provides the end-user with an out of the box

ready to use video processing core, without having to learn about the underlying complexities.

The Video Processing Subsystem enables streamlined integration of various processing blocks

including scaling, deinterlacing, color space conversion and correction, Chroma resampling, and

frame rate conversion [3].

:: + s_axi_ctrl
: + s_axis
= aclk_axis

= aclk_ctrl

= aclk_axi_mm
«Q aresetn ctrl

= deint_field_id

v_proc_ss_0

]

m_axis -
m_axi_mm ==

aresetn_io_axis[0:0]

Video Processing Subsystem

Figure 40. Full-Fledged Video Processing Subsystem

Key Features

e One, two, four, and eight pixel-wide AXI4-Stream video interface

e Video resolution support up to 8k at 30 fps

e Run-time color space support for RGB, YUV 4:4:4, YUV 4:2:2, YUV 4:2:.0

e 8,10, 12, and 16 bits per component support

e Deinterlacing: supports 32-bit and 64-bit memory address

e Scaling

e Color space conversion and correction

e Chroma resampling between YUV 4:4:4, YUV 4:2:2, YUV 4:2:0

e Frame rate conversion using dropped/ repeated frames.

D=

Page 4 of 70

loQictronix
PYNQ Z1 Video Processing Subsystem Feature Implementation

CHAPTER 2: HARDWARE & SOFTWARE DESIGN

This project design is created with Vivado Design Suite, System Edition 2020.1. The Vivado IP
Integrator is used to create the hardware block. It contains Zynq Processing System. So, the

project design requires software application to work.

Under this section, this document will go through hardware and software part of design.
HARDWARE DESIGN

The hardware block is designed using Xilinx as well as Digitlentic IPs. Most of the Xilinx IPs are
already available in the Vivado IP catalog while installing Vivado. If it is required to use the IPs,
which are not available in the Vivado IP catalog, then we have to add them by Add Repository

options.

This hardware design is segmented into two sections; Hardware design flow and hardware IP

block design.
A. DESIGN FLOW

Every hardware design starts with creating new project. Vivado has two ways of working with the
IDE. It provides Graphical User Interface (GUI) and Command line Tool (TCL Console). User

can use either of them.

This section will go through all the steps involved while creating new project in Vivado by GUI

method as well as TCL Console method.

Page 5 of 70

wa; logictronix

PYNQ Z1 Video Processing Subsystem Feature Implementation

GUI Method of creating New Vivado Project

1. In the main page of Vivado IDE, new project can be created by clicking on Create Project.

This will pop-up Create a New Vivado Project dialog window.

4 Vivado 2020.1

- & bs
Eile Flow Tools Window Help O Quick Access
VIVADO! £ XILINX.
HLx Editions

Quick Start

Tasks

Manage IP »
Open Hardware Manager >
XHub Stores >

'w
Learning Center ‘

Ted Console

Pews Project Wizard will guide you trough the process of selecting design sources and a target deuice for & new project

Figure 5. Vivado Welcome Page

2. This pops-up dialog window that gives short information about creating new Vivado

project. We can skip this by click on Next.

New Project X
P Create a New Vivado Project
VlVﬁQQ This wizard will guide you through the creation of a new project.
To create a Vivado project you will need to provide a name and a location for your project files. Next, you will specify the type of flow you'll be
warking with. Finally, you will specify your project sources and choose a default part
& XILINX.
@

Figure 6. Project Create Dialog Box

After clicking next, we go through a series of dialog windows to set project name and its

location directory and then adding block design, constraints files and finally part or board

selection.

Page 6 of 70

L logictronix

PYNQ Z1 Video Processing Subsystem Feature Implementation

3. Under this Project Name dialog window, we have to give Project Name and Project
Location for our new project. We can Browse the directory to locate our project. After that,
we proceed ahead by clicking on Next.

Note: There should not be any spaces or special characters (except '_" & '-') in the project
name and the directory. We must also check the project name length and directory path

length. Because, windows OS only support 255 characters.

4 New Project X

Project Name

Enter a name for your project and specify a directory where the project data files will be stored ’

Projectname:
Project location. IE‘

[v) Create project subdirectory

Project will be created at:

2)
() <Batk Ne: Cancel

Figure 7. Project Name & location setting dialog window

4. Under this window, we have to specify Project Type to be created. There are five options to

specify the type of our project.

4 New Project X

Project Type
Specify the type of projectto create. [

e RTL Project
You will be able to add sources, create block designs in IP Integrator, generate IP, run RTL analysis, synthesis, implementation, design planning and analysis.

() Do not specify sources atthis time

Postsynthesis Project
*You will be able to add sources, view device resources, run design analysis, planning and implementation.

) IO Planning Project
Do not specify design sources. You will be able to view partipackage resources

Imported Project
" Create a Vivado project from a Synplify, XST or ISE Project File:

Example Project
Create a new Vivado project from a predefined template.

3y

Figure 8. Project Type selection window

Page 7 of 70

L. logictronix
- PYNQ Z1 Video Processing Subsystem Feature Implementation

Based on the requirements of the project design, we can select any of these types. In our
project design scenario, we go selecting RTL Project type. Because, this type of project allows
us to add sources, block design in the IP integrator, simulate the design, run RTL analysis,
synthesis, implementation, design planning and analysis, generate bit stream. After this, click
Next to go another project dialog window.

Under this window, we Add Sources, such as, HDL, netlist, Block Design, IP files. If we want
to add such sources, we can click Add Files button or Plus icon. We can also create such files
ourselves by clicking on Create File button. We can click on Add Directories to add source
location.

Besides this, we can specify Target language and Simulator language. By default, these
languages are selected to Verilog and Mixed respectively. After that we proceed to Next.
NOTE: we can also skip this add source window. Because, Vivado also allows us to add such

sources and files after creating the project.

4 New Project X

Add Sources

Specity HOL, netiist, Block Design, and IP files, or directories containing those files, o add to your project. Create a new source file on disk and add itto your project.
You can also add and create sources later.

+

Add Directories or Create File buttons below

Add Files | ‘ Add Directories | ‘ Create File

Targetlanguage: Verilog - Simulator language: | Mixed -

=Y

Figure 9. Add source dialog window

Page 8 of 70

o], . .
L. logictronix
- PYNQ Z1 Video Processing Subsystem Feature Implementation

6. Under this window, we specify or create constraint files for physical and timing constraints.

4 New Project X

Add Constraints (optional)

Specify or create constraint files for physical and timing constraints. [

Use Add Files o Create File buttons below

AddFiles Create File

@

Figure 10. Add constraints dialog window

To add constraint to our new project, we click on Add Files. It allows to locate the constraint

file.

Figure 11. Copy constraints files into project

After adding constraint, we must have to Tick on Copy constraints files into project.
Otherwise, when we do constraint changes in our project, it will also cause to change the
constraint to the original file or other project’'s constraint from where we added this.

To create constraint file, we can create it ourselves for which we click on Create File. It will
create constraint file (.XDC file) for our new project.

After this, we click on Next.

NOTE: We can also skip this window. Because, Vivado also allows us to add or create

constraint files later after creating the project.

Page 9 of 70

{7 logictronix
- PYNQ Z1 Video Processing Subsystem Feature Implementation

7. Under this window, we have to choose Board or Part to implement our project.

New Project X

Default Part
Choose a default Xilinx part or board for your project [

Parts | Boards

Reset All Filters Install/Update Boards

Vendor. Al ~ Name: | All v BoardRev: | Latest ~
gearch: | v
Display Name Preview Vendor File Version ~ Part 1O Pin Count Board Rev
Zybo Z7-10 &
m digilentinc.cem 10 xc7z010cigd00-1 400 8.2
Zybo Z7-20
digilentinc.com 10 X72020cig400-1 400 B2
ZedBoard Zynq Evaluation and Development Kit
Add Daughter Card Connections em.awnet com 14 X720206ig484-1 484 d

PYNO-Z1
i(%) www.digilentinc.com 1.0 x72020cig400-1 400 10
P .

Spartan-7 SP701 Evaluation Platform
<

Figure 12. Project part or project board selection window

In this window, there are two tabs, i.e. Parts and Boards. We can go to parts tab to select
board part or we can go to boards tab to select board. Under both tabs, we see Xilinx's part
and board lists respectively. These are only visible as long as these are installed. We can also
Search board or part to select. To install or update any board definition, we can go to
Install/Update Boards on top right of this window.

In our project design, we select PYNQ-Z1 board, after which we proceed Next.

8. Under this window, we see New Project Summary.

4 New Project X

New Project Summary

VIVADO'!

HLX Editions
@ Anew RTL project named ‘pynq_z1_vprocss’ will be created

Mo source files or directories will be added. Use Add Sources to add them later.
No constraints files will be added. Use Add Sources to add them |ater.

@ The default part and product family for the new project
Default Board: PYNQ-Z1
Default Part: xc72020c1g400-1
Product Zyng-7000
Family: Zyng-7000
Package: clg400
Speed Grade: -1

i: XILINX To create the project, click Finish

r~Y

Figure 13. Project summary dialog window

Page 10 of 70

.|
| ey

1
I

7 : :
. logictronix

PYNQ Z1 Video Processing Subsystem Feature Implementation

It gives the information about project name, selection of source file, constraint file and finally

information of selected part or board.

9. Now, we click on Finish to create new Vivado project based on the above steps parameters.

10. When new project create is successful, it opens into Vivado IDE as shown below.

Eile Edit Flow Tools
&«
Flow Navigator =

v PROJECT MANAGER
£} Settings
Add Sources
Language Templates

=¥ IP Catalog

v IP INTEGRATOR
Create Block Design
Open Block Design

Generate Block Design

v SIMULATION

Run Simulation

v RTLANALYSIS
> Open Elaborated Design

v SYNTHESIS
P Run Synthesis

> Open Synthesized Design

~ IMPLEMENTATION

P RunImplementation

Reports

Window Layout View Help | O QuickAccess Ready
b‘ B o X Default Layout ~
2 PROJECT MANAGER - pyng_z1_vprocss 2 x
A
Sources ? 00X Project Summary 00X
a T 2 + o Overview | Dashboard
Design Sources A ol
> Constraints Settings Edit
v Simulation Sources - Project name: pyng_z1_vprocss
Hierarchy Libraries Compile Order Project location DiiLogicTronix/pyng_z1_vprocss
Product family. Zyng-7000
Properties 2 _O0K X Project part: PYNQ-Z1 (xc7z020cig400-1)
™ Top module name Not defined
Target language Verilog
Simulator language: Mixed
Select an object to see properties
v
< >
TclConsole x Messages | Log | Reports | Design Runs ? 00
Q = £ Il B B O
) create_project pynq zl vprocss D:/LogicTronix/pyng zl vprocss -part xclz020clg400-1 ~
. [IP_Flow 19-234] Refreshing IP repositories
| INFO: [IP_Flow 19-1704] No user IP repositories specified
\ INFO: [IP_Flow 19-2313] Loaded Vivado IP repository 'C:/Eilinx/Vivado/2020.1/data/ip'.
) pynq_zl_vprocss
| set_property board_part www.digilenting.com:pyng-zl:part:1.0 [current_project]
: -
£ >
J1L

Figure 14. Vivado IDE after creating new window

TCL Console Command Method of creating New Vivado Project

We can also create new project by using TCL command, which is faster than GUI method. In this

method, we use following command to create the project.

1. To create the project with part selection, we use create_project and —part command as

following;

create_project <project_name> <project_directory/project_name> -part <part>

Here, we give project name in <project_name> field,

We give project directory with project name in <project_directory/project_name> field

And finally we have to specify part designation in <part> field.

Page 11 of 70

q{; logictronix

—

PYNQ Z1 Video Processing Subsystem Feature Implementation

In this project design scenario, we are intending to use PYNQ-Z1 board. So, in order to create

project, the TCL command becomes

create_project pynq_z1_vprocss D./LogicTronix/ pynq_z1_vprocss -part xc72020clg400-1

Now, we have to enter this command in TCL console as following.

- Vivado 2020.1

File Flow Tools

Window Help

Q- Quick Access

VIVADO!

HLx Editions

Quick Start

Create Project >
Open Project >

Open Example Project >

& XILINX.

Tacle
Tcl Console ?2 00X
I B =
~
: -
< >
create_project pynq_zl_vprocss D:/Logiclronix/pyng zl_vprocss —part xc7z020c1gano-1

Figure 15. Vivado welcome page with TCL Console

2. After entering the command, Vivado quickly creates new project and opens Vivado IDE

File Edit Flow Tools Reports Window Layout View Help Q- Quick Access Ready
=, ,oE OB X == Default Layout v
Flow Navigator ES L S PROJECT MANAGER - pynq_z1_vprocss ? X

v PROJECT MANAGER ~ .
Sources ? 00X Project Summary ?200X
£} Settings
Q T & 4 0 -] Overview | Dashboard
Add Sources
Design Sources] el
Language Templates > = Constraints Settings Edit
F IP Catalog ~ [simulation Sources N Project name pyng_z1_vprocss
Hierarchy | Libraries Compile Order Project lacation: Di/LogicTronix/pyng_z1_vprocss
~ I INTEGRATOR Product family: Zyng-7000
Create Block Design Properties 2 _0O0OX Project part: Xc7z020clg400-1
Open Block Design B Top module name: Mot defined
Target language Verilog
Generate Block Design Simulator language Mixed
Selectan object to see properties
v SIMULATION v
< >
Run Simulation
TciConsole x Messages | Log | Reports | Design Runs ?_00
v RTL ANALYSIS =
a x I B E W@
> Open Elaborated Design -
7 create_project pynq_zl_vprocss D:/LogicTronix/pyng_zl_vprocss -part xc7z020clg00-1 ~
| INFO: [IP_Flow 19-234] Refreshing IP repositories
~ SYNTHESIS ! INFG: [IP_Flow 19-1704] No user IP repositories specified
! INFO: [IP_Flow 19-2313] Loaded Vivado IP repository 'C:/Eilins/Vivado/2020.1/data/ip".
P Run Synthesis () pynq_zl_vprocss
> Open Synthesized Design
: ~
~ IMPLEMENTATION < ks
P Runimplementation ol Iﬂ

Page 12 of 70

{7 logictronix
- PYNQ Z1 Video Processing Subsystem Feature Implementation

3. The Vivado creates the project with Project Part. If we want to add the board definition to

current project, then we have to simply enter the following TCL command.

set_property board_part <board_definition> [current_project]

Here, we have to specify the board definition of project part.
In this project design, PYNQ-Z1 board is used. So, we specify this board definition as

following;

set_property board_part www.digilentinc.com:pynq-z1:part0:1.0 [current_project]

4. After entering the TCL command, now the project part is changed to board.

File Edit Flow Tools Repors Window Layout View Help Q- Quick Access Ready
= « >, B & Z Default Layout v
Flow Navigator — 8 PROJECT MANAGER - pyng_z1_vprocss ? X
~ PROJECT MANAGER - .
Sources. ? 00X Project Summary 200X
£} Settings
Q' 'z & + & Overview | Dashboard
Add Sources
Design Sources] My
Language Templates i
ousg P > = Constraints Settings Edit
I IP Catalog ~ = simulation Sources N Project name: pyna 71 vprocss
Hierarchy | Libraries Compile Order Project location: D:/LogicTronipyng_z1_vprocss
~ IPINTEGRATOR Product family: Zyng-7000
Create Block Design Properties 2 _ 00O X Project part: PYNQ-Z1 (xc72020c1g400-1)
Open Block Design Top module name: Mot defined
- bl Targetlanguage verilag
Generate Block Design Simulator language: Mixed
Select an objectto see properties
v SIMULATION v
< >
Run Simulation
TciConsole x Messages | Log | Reports | Design Runs 2 _00
~ RTL ANALYSIS - .
a x = IIB B @
» Open Elaborated Design L
) create project pynq_zl_vprocss D:/Logiclronix/pyng zl VProcss -part xc7z020clg4o-1 ~
! INFO: [IE Flow 18-234] Refreshing IP repositories
v SYNTHESIS ! INFO: [IE_Flow 15-1704] No user IP repositories specified

. INFO: [IP_Flow 19-2313] Loaded Vivade IP repository 'C:/Xilinx/Vivado/2020.1/data/ip".
") pynq_z1_vprocss
: set_property board_part www.digilentinc.com:pyng-zl:part0:1.0 [current_project]

P Run Synthesis

> Open Synthesized Design

~ IMPLEMENTATION Q >

P Run Implementation .l

Figure 16. Vivado IDE window after changing project part

In this way, by using TCL command, Vivado creates new project quickly within a few steps.

Now after creating the project, we need to add diagram canvas to create IP blocks. For this, we

have to follow the steps;
Flow Navigator > IP Integrator > Create Block Design

This pops-up a window, where we set the block design name. And click on OK.

Page 13 of 70

- logictronix
- PYNQ Z1 Video Processing Subsystem Feature Implementation

¢ Create Block Design X

Please specify name of block design

Design name: |design71| |
Directory: » <=Local to Project= hd
Specify source set: Design Sources ~

(2)
(2) 0K Cancel

Figure 17. Block Design name pop-up window

We can also enter following TCL command to create the block design instead of GUI method.
create_bd_design "design_1"

Now this opens diagram canvas

Eile Edit Flow Tools Reports Window Layout View Help Q- Quick Access Ready
=, - E > ko Default Layout v
Flow Navigator ==L BLOCK DESIGN - design_1 2? X
v PROJECT MANAGER o
Sources x Design Signals | Board ? 00 Diagram x Address Editor % 200
£} Seftings
a = 2 + & HoM O + =& *C Default View v
Add Sources
[Design Sources (1 A
Language Templates -
usg i [E design_1 (design_1.bd}
¥ IP Catalog > = Constraints
~ = Bimulation Seurces (1
~ IPINTEGRATOR | e 3481 s hd
Hierarchy = IP Sources Libraries Compile Order
Create Block Design This design is empty. Press the = button to add IP
Open Block Design Properties ?2 _0O0E X
Generate Block Design o
¥ SIMULATION Select an objectto see properties
Run Simulatien
Tel Console Messages | Lo Reports | Design Runs ? - 4
~ RTLANALYSIS " J *J = d E 2] [2)
> Open Elaborated Design Q = 2 I B E @
" pyng_zl_vprocss ~
| set_property board part www.digilentinc.com:pyng-zl:part0:1.0 [current_project
v SYNTHESIS : __1_ v "_J_ : ; g: PYRg-zlir [_project]
D) create_bd_design "design_1
P Run Synthesis | Wrote : <D:\LogicTronix\pyng_zl_wprocss\pynd_zl_vprocss.srcs\gources_l\bd\design_l\design_l.hd>
- create_bd design: Time (s): cpu = 00:00:02 ; elapsed = 00:00:09 . Memory (MB): peak = 2261.371 ; gain = 0.000
> Open Synthesized Design ! update_compile_order -fileset scurces_l
: v
~ IMPLEMENTATION < ’
d
P RunImplementation o

Figure 18. Vivado IDE after creating block design
Before starting to create hardware block design, we have to check IP Repositories. This is only
required when we need to add IPs that are not available in Vivado IP catalog. That means,
Vivado has already some of Licensed Xilinx IPs. And if our block design has IPs which are not

found in the Vivado IP catalog, then we need to add those missing.

In this project design, we have to interface with HDML So that, we have to add Digilent
RGB2DVI IP to Vivado IP repository.

Page 14 of 70

L logictronix

PYNQ Z1 Video Processing Subsystem Feature Implementation

Repositories can be added by following steps;
Flow Navigator) Project Manager) Setting
This opens Setting dialog.

Project Setting) IP) Repository
Click on @ to go to locate IP repository directory. Then click on OK to finish adding IP

repositories.

¢ Settings X

IP > Repository
Add directories to the list of repositories. You may then add additional IP to a '
selected repository. If an IP is disabled then a tool-tip will alert you to the reason

Project Settings
General
Simulation [T InoTioinooioeieees
Elaboration IP Repositories
Synthesis
Implementation *‘I}

Bitstream
v P
Repository
Packager

Tool Settings Refresh All

Project

IP Defaults
> XHub Store

Source File

Display

WebTalk

Help
> Tex Editor

3rd Parly Simulators
> Colors

No content

Selection Rules
Sharteuts
> Strategies &

2

Figure 19. Add IP Repositories dialog window
Besides this, we can also enter TCL command to add IP repositories. For this, we use following
command.
set_property ip_repo_paths <ip _repo_directory> [current_project]

Here, we have to locate the IP repositories directory in <ip_repo_directory> field.

Now, we are all set. We can proceed to hardware IP block design.

Page 15 of 70

-l loQictronix

5

PYNQ Z1 Video Processing Subsystem Feature Implementation

B. IP BLOCK DESIGN

In this section, we create IP blocks by adding the required IPs from the IP catalog.

File Edit Flow Tools Reporis Window Layout View Help O- Quick Access Ready
=, SO A LI - BN Default Layout v
Flow Navigator = B BLOCK DESIGN - design_1 ? X
¥ PROJECT MANAGER -
Sources x Design Signals | Board ?_00 Diagram x Address Edilor x 200
£} Settings
a = 2 + & noHE O + & *C Default View v &
Add Sources
~ [Design Sources (1 by
L. T It
anguags Templates design_1 (desion_1.0d)
¥ IP Catalog » = Constraints
~ = Simulation Seurces (1
,,,,,,,,,,,,,,, =

~ IP INTEGRATOR
Create Block Design
Open Block Design Properties

Generate Block Design

¥ SIMULATION

Run Simulation

~ RTLANALYSIS
a 2 Il B B @

> Open Elaborated Design

,,,,,,,,,,,, A
Hierarchy |P Sources Libraries Compile Order

? 00X

Select an object to see properties

TclConsole x Messages Log Reports Design Runs

This design is empty. Press th| utton to add IP

earch: | Q- ”

[}

-3

1G/2.5G Ethernet PCS/PMA or SGMII F

2D Graphics Accelerator Bit Block Transfer

3GPP LTE Channel Estimator

3GPP LTE MIMO Decoder

3GPP LTE MIMO Encoder ? 00
3GPPLTE Turbo Encoder

3GPP Mixed Mode Turbo Decoder

" create_bd design: Time (s}: cpu = 00:00:08 ; elapsed = 00:00 0.000 ~
v SYNTHESIS | update_compile order -fileset sources 3GPP Turbe Encoder
! set_property ip repo_paths D:/Digitronix/VIVADO LIBRERY/vi:| < 10G Ethernet MAC
P Run Synthesis update_ip catalog
| INFO: [IP_Flow 19-234] Refreshing IP repositories 100W/1G TSN Subsystem
> Open Synthesized Design INFO: [IE Flow 18-1700] Loaded user IF repository 'd:/Digitrs Accumulator
: Adder/Subtracter v
~ IMPLEMENTATION < Advanced Encryption Standard (AES) >
d
P RunImplementation o AHB-Lite to AXI Bridge

AMM Master Bridge

Figure 20. Adding IP to IP Integrator

To begin adding IPs, we can click on any @ icon within diagram canvas or we can also use shortcut

key Ctrl+I. This will pop-up the IP selection window. Here, we can scroll down or use search box

to find necessary IPs.

In this project design, we have following major IPs. They are;

e Zynq Processing System,

e Video Processing Subsystem (VPSS),
e Test Pattern Generator (TPG),

e Video Timing Controller (VTC),

e Clocking Wizard,

e AXI4-Stream Subset Converter,

e AXI4-Stream-to-Video Out and

e RGB2DVIL

Page 16 of 70

L. logictronix
- PYNQ Z1 Video Processing Subsystem Feature Implementation

We add and connect these IPs one after another. We also do run block automation and run
connection automation so that Vivado IP integrator automatically does necessary IP connections,

preset configurations and addition of interconnect IPs and so on.
All the IPs and their customizations and connections are described as following;
1. Zynq Processing System

The processing system (PS) in Zyng-7000 is dual-core ARM cortex A9 processor or CPU placed
in the same FPGA chip along with the programmable logic (PL). This is the central processing
system of the project. It provides the configuration and control of all IP drivers and hence the
video processing. The DDR of processing system (PS DDR) is used as frame buffer. This frame

buffer is used by video processing subsystem IP to achieve various features.

processing_system7_0

DDR + |||
[[[4+ s_AxI_HPO_FIFO_CTRL FIXED_IO + |||
i+ S_AXI_HPO - USBIND_ O + |||
- M_AXI_GP0_ACLK ZYNQ. M_AXI_GPO 4}
- S _AXI HPO_ACLK FCLK_GLKO

FCLK_RESETO_N

Figure 21. Zynq Processing System

In case of current project design, High Performance (HPO) Slave Interface is enabled, which
provides DDR memory access to video processing subsystem IP. General Purpose (GP0) Master
interface is enabled, which is used to configure and control the video processing IP chain by data

read and data write process.

FCLK_CLKO is enabled in the PS. This clock is set to generate 148.5 MHz. The clock pin of all the

video processing IPs are connected to this clock source.

Page 17 of 70

- logictronix

PYNQ Z1 Video Processing Subsystem Feature Implementation

2. Test Pattern Generator (TPG) v8.0

v_tpg 0
|4 s_axi CTRL _
- ap_clk Vieado™ HLS m_axis_video =+ =
g fid[0:0]
ap_rst_n [‘ :I

interrupt
fid_in[0:0]

Figure 22. Video Test Pattern Generator

TPG is used as the video source for this design. This IP generates the different video test pattern
data. The control bus is used to program the IP from SDK. The specific pattern selection is also
done through programming. However, to generate specific type of pattern, user has to enable

all the pattern type in the hardware design.

Re-customize IP x
Video Test Pattern Generator (8.0) '
© Documentation IP Location

() Show disabled ports Component Name |v_tpg_0

Samples per Clock 1 ~

Maximum Data Width 8 -

Maximum Number of Columns 4095\ [f

Maximum Number of Rows 2160

(1) HAS AXI45 SLAVE

[C) HAS AXI4 YUV422 YUVA20

Background Patterns
(¥ SOLID COLOR [+ RAMP [¥] COLOR BAR

[DISPLAY PORT (v/] COLOR SWEEP () ZONE PLATE

Foreground Patterns

(] FOREGROUND

Figure 23. TPG pattern enable

The video stream is then fed to video processing subsystem IP.

More information about this IP can be found on its product guide PG103. [4]

Page 18 of 70

{7 logictronix

PYNQ Z1 Video Processing Subsystem Feature Implementation

3. Video Processing Subsystem (VPSS) v2.1

v_proc_ss 0
’ N

o + s_axictrl

; + s axis

= aclk_axis m_axis = E-
= aclk_ctrl I:'I w] m_axi_mm + ;-.
= aclk_axi_mm aresetn_io_axis[0:0] @@=
Q aresetn_ctrl

— deint_field_id

Video Processing Subsystem

Figure 24. Full-Fledged Video Processing Subsystem

VPSS enables streamlined integration of various processing blocks including scaling,

deinterlacing, color space conversion and correction, Chroma resampling, and frame rate
conversion.
Re-customize IP X

Video Precessing Subsystem (2.2)

@ Documentation IP Location

() Show disabled ports Component Name |v_proc_ss_0

Top Level Deinterlacer ~ Scaler 422444 Chroma Resampler = 420422 Chroma Resample

3 m

Samples Per Clock 1 ~
Maximum Data Width 10 4
Maximum Number of Pixels 3840 [64-8192
Maximum Number of Lines 2160 [64 - 4320

Video Processing Functionality Full Fledged v

Top Level Configuration Options

[+ Enable Interiaced Input

[+ Enable Built-in DMA

Color Space Support

(®) RGB | YUV 4:4:4 | YUV 4:2:2 | YUV 4:2:0
() RGB| YUV 4:4:4 | YUV 4:2:2

() RGB| YUV 4:4:4
“

Figure 25. VPSS Customization

Under customization, VPSS IP can be operated in one of the following modes, such as, full-
fledged mode, scalar mode, deinterlacing mode, color space conversion mode and Chroma Re-

sampler mode. But this project design uses full-fledged mode. By this mode, all other mode

Page 19 of 70

{7 logictronix
- PYNQ Z1 Video Processing Subsystem Feature Implementation

functionalities can be obtained. And in this mode, AXI-memory mapped interfaced is added to

IP so that IP can be connected to DDR memory for frame processing.

This IP also has control bus for its configuration from SDK. We can do coding to generate

different functional outputs.

This IP receives video stream from TPG and then generates output. This output is fed to

following video processing IPs.

V_tpg 0 v_proc_ss_0

=i+ s axd CTRL
- viwade™ HLS | m_axis_video +
ap_clk
, fid[0:0]
aprsin ' interrupt

fidl_in[0:0]

_J‘f‘ s_axd_ctr axis_subset_converter 0
=+ s as

— = aclk_axis Vivado™ HLS m_axis + [j+ S AXIS .
= acll_ctrl m_axi_mm -+ :I aclk “ M_AXIS - Fom=
= aclk_ad_mm ' aresetn_io_axis[0:0] areseln .

Video Test Pattern Generator L] ’V

deint_field_id

AXl4-Stream Subset Converter

Video Processing Subsystem

Figure 26. VPSS Input Output Connection

Video Processing Subsystem IP has aresent_io_axis[0:0] output reset pin. This is only visible
when this IP is customized to full-fledged mode. This reset pin is used to control the reset line of
upstream and downstream IPs. That means, until VPSS IP gets ready to work, its reset pin is used
to set the upstream and downstream IPs in reset mode. So that, these IPs will not send or receive

the stream. In this project design, the reset pin of VPSS IP is connected to input reset pin of TPG
and AXI4S Subset Converter IPs.

v_proc_ss_0

- axis_subsel converter_0
__(+ s_axi_ctrl p = = =
= & _axis
. v_tpg_0 _ + s : .) . =+ 5_axis .
adk_axis Viraco™ HLS m_axis + £ = -
= . = ack n M_AXIS 4 ==
| 5_axi_CTRL . ne +E aclk_ctrl m_axi_mm = ;= amsein "
Vivaco™ HLS -
ap_ck m_aa_y ﬁ:[?}-n] - ack_axi_mm ' aresetn_io_axis[0:0] "
@ ap_rst_n ' R S AX14-Stream Subset Converter
= fid_in[0:0] deint_field_id
Video Test Pattern Generator Video Processing Subsystem
[
L o | I

Figure 27. VPSS reset line control

Video Processing Subsystem has multitude of features. For more technical details, user can visit

Video Processing Subsystem Product Guide [5].

4. AXI4-Stream Subset Converter

Page 20 of 70

L. logictronix
- PYNQ Z1 Video Processing Subsystem Feature Implementation

This IP is mainly used for proper AXI4-Stream width conversion. If stream width has to be
converted such as 24 bit to 16 bit or vice versa, this IP can be used. Otherwise, this IP can be

omitted. For more details, we visti its product guide PG085. [6]

In our project design, this IP is used for 24 bit conversion for RGB Stream.

5. Clocking Wizard v6.0

Clocking Wizard is a clock generator IP. It helps creating the clocking circuit for the required
output clock frequency, phase, and duty cycle using a mixed-mode clock manager (MMCM)
(E2/E3/E4) or phase-locked loop (PLL) (E2/E3/E4) primitive. This IP accepts up to two input clocks

and generates up to seven output clocks per clock network.

clk_wiz_0
o= s_axi_lite
= 5 axi_aclk clk_out1 e
=0 s axi_aresetn locked ==
= clk_in1

Figure 28. Clocking Wizard IP

In this project design, clocking wizard IP receives one input clock and generates one output clock.
The generated output clock forms the pixel clock for VTC IP, AXI4-Stream-to-Video Out IP and
RGB2DVI IP. This IP can be customized either in static mode or dynamic mode. In static mode,
the IP generates the fixed output clock as defined by user. On the other hand, if IP is in dynamic
mode, any required output clock can be generated as per programming. For this, AXI-Lite

interface is added to IP. Under the customization window, we can enable dynamic

reconfiguration mode.

Page 21 of 70

. logictronix

PYNQ Z1 Video Processing Subsystem Feature Implementation

4 Re-customize IP

Clocking Wizard (6.0)

@ Documentation IP Location

IP Symbol Resource

(] Show disabled ports

S|4 s_axi_lite
5_axi_aclk

clk_out1
locked

g s_axi_aresetn

clk_in1

X

Component Name clk_wiz_0
Board | Clocking Options OutputClocks | MMCM Settings | Summary

|_I Enable Clock Monitering ~
Primitive

® MMCM PLL

Clocking Features Jitter Optimization

[Frequency Synthesis [Minimize Power ® Balanced

[+/] Phase Alignment) Minimize Output Jitter

[+ Dynamic Reconfig () Dynamic Phase Shift () Maximize Input Jitter fiitering

[safe Clock Startup
Dynamic Reconfig Interface Options

~

< b

Figure 29. Clocking Wizard Customization

In this project design, clocking wizard is enabled with dynamic reconfiguration. This is because

of the fact that when we need to vary the output resolution, we must require corresponding

resolution pixel clock. Therefore, whenever video processing subsystem performs scaling to

different resolution, the clocking wizard is programmed to generate the pixel clock, which is

corresponding to scaled resolution.

ACLK
:
1
1
1
I=p)
Clocking
wizard

- 1

1 1

i | AXI4S

1 . 1

e U]| e
Timing Video 0o
Controller Out DVI

Figure 30. Clocking Wizard Output Clock

Page 22 of 70

- logictronix

PYNQ Z1 Video Processing Subsystem Feature Implementation

proc_sys_reset_0

v_axi4s_vid_out_1
: =+ video_in
:: = vtiming_in vid_io_out == H

ck_wiz_0

—Z| 4 s_axi lite
s_axi_aclk clk_out!
8 s_axi_aresetn locked

chk_in1

Clocking Wizard

ﬂ slowest_sync_clk mb_reset
axt_reset_in bus_struct_reset[0:0]
aux_reset_in pernpheral_reset[0:0]
mb_debug_sys_rst interconnect_aresetn[0:0]
dem_locked peripheral_aresetn[0:0]

Processor System Reset
v_tc 0
4 ot
- ck
clken
s_axi_ack wtiming_out 4 "—
s_axi_aclken irq =
gen_clken feync_out[0:0] =
resetn
s_axi_aresetn

adk vig_ce

aclken locked

aresetn overflow

I
fid underflow
- vid_io_out_dk fifo_read_level[10:0] m=
vid_io_out_ce status[31:0]
vid_io_out_reset

AXI4-Slream to Video Out

- rgb2dvi_0

Video Timing Controller

- PixelClk

1 RGE to DVI Video Encoder (Source) (Pre-Production)

Figure 31. Clocking wizard output clock connection

Detailed information can be gained from Clocking Wizard Product Guide[7].

6. Video Timing Controller (VTC)

The Video Timing Controller IP core is a general purpose video timing generator and detector.

The core is highly programmable through a comprehensive register set allowing control of

various timing generation parameters. This programmability is coupled with a comprehensive set

of interrupt bits which provides easy integration into a processor system for in-system control of

the block in real-time. The Video Timing Controller is provided with an optional AXI4-Lite

interface.

v_tc 0
x + ctrl
clk
clken
s_axi_aclk vtiming_out - ”I
s_axi_aclken irq =
gen_clken fsync_out[0:0] mm

resetn
s_axi_aresetn

fsync in

Figure 32. Video Timing Controller (VTC) IP

Page 23 of 70

L. logictronix
- PYNQ Z1 Video Processing Subsystem Feature Implementation

Unlike the programmability, VTC can be configured as static for static video modes. In other

words, if video processing block is designed for only a particular video resolution, VTC IP can be

customized to support that video resolution only.

/' Re-customize IP

Video Timing Controller (6.2)

o Documentation IP Location
[7) show disabled ports

ComponentName |v_tc_0

Detection/Generation Default/Constant = Frame Sync Position

Optional Features

[¥) Include AX14-Lite Interface

[] Include INTC Interface

4 e

clk [Interlaced Video Support

clken -

< axi_ack viiming_out + ” [_J Synchronize Generator to Detector or to fsync_in

=_axi_aclken iy

gen_clken taync_out[o:0] Max Clocks PerLine | 4096 A Max Lines Per Frame = 4096 v

g| D Frame Syncs 1 -

Q = sxi_aresstn

fsyne_in () Enable Generation () Enable Detection

Generation Options Detection Options

[¥) Vertical Blank Generation

[+] Horizontal Blank Generation
v

Figure 33. VTC IP Customization
In this project design, the VTC is used to generate the video timing. AXI4-Lite Interface is also
enabled. By doing this, VTC IP can be programmed to generate different video timing signals in

real-time. Based on the output video resolution set in the video processing subsystem, the VTC

IP generates corresponding timing signals.
For more details, we can visit product guide PG016 [8].

7. AXl4-Stream-to-Video Out

The AXI4-Stream to Video Out IP core is designed to interface from the AXI4-Stream interface
implementing a Video Protocol to a video source, such as, parallel video data, video syncs, and
blanks. This core works with the Video Timing Controller IP. This core provides a bridge between

video processing cores with AXI4-Stream interfaces and a video output.

Page 24 of 70

L. logictronix
- PYNQ Z1 Video Processing Subsystem Feature Implementation

v_axids_vid_out_1

:—:+ video in

” 4 vtiming_in vid_io_out +|I|
- aclk vig_ce =
= aclken locked =
=0 aresetn overflow =
- fid underflow =
— vid_io_out_clk fifo_read_level[10:0] m=
— vid_io_out_ce status[31:0] m=
= vid_io_out_reset

AXI4-Stream to Video Out

Figure 34. AXI4-Stream to Video Out IP
In the project design, this core generates 24 bit parallel RGB video data. Its clock mode is set to
independent mode. So that, we can give separate clocks for AXI4-Stream interface and output

video stream.

This IP has video timing generator control enable (vtg_ce) output pin, which is connected to
gen_clken input pin of VTC IP. By this, axis4stream to video out IP is able to enable or disable

the video timing generation for the purpose of synchronization between video stream and its

timing.
]
vic 0
-_ + ctrl v_axids_vid_out_1
— ck
=—0 clken :+ video_in
——— s_axi_aclk viiming_out 4 " ” —+ vliming_in vid_io_out "__
=—0 s_axi_aclken irq = aclk vig_ce
— gen_clken fsync_out[0:0] = acken locked
——Q resetn aresetn overflow
s_axi_aresetn — fid underflow
= fsync_in — vid_io_out_clk fifo_read_level[10:0)
vid_io_out_ce status[31:0]
Video Timing Controller vid_io_out_reset
| AXI4-Stream to Video Out

Figure 35. AXI4Stream-to-video out ip controlling video timing generator
AXI4-Stream to video out IP has three signal status output pins. They are; locked, overflow and
underflow. These signals are dependent to synchronization between video stream and its video
timing. When stream and timing are perfectly synchronized, then locked signal is set to high,
which means IP is ready to generate video output. Then finally, generates native video stream

that has 24 bit parallel video data, video active signal, and hsync and vsync signals.

Page 25 of 70

o], . .
{7 logictronix
- PYNQ Z1 Video Processing Subsystem Feature Implementation

8. RGB-to-DVI

rgb2dvi 0
||’+ RGB
aRst ™DS + |
PixelCIk
Figure 36. RGB-to-DVI Encoder IP
In order to display video stream on output monitor, we have to use this IP. This is because, PYNQ-
Z1 only has HDMI to display the video. So that, we need to access pynq HDMI interface. RGB-to-
DVI IP is made by Digilent that facilitates to access HDMI interface. This IP interfaces directly to
raw transition-minimized differential signaling (TMDS) clock and data channel outputs as defined
in DVI 1.0 specs for Source devices. It encodes 24 bit parallel video data from AXI4-Stream-to-
Video-out IP along with pixel clock and synchronization signals. It supports resolution from
1920x1080p@60Hz to 800x600p @60Hz with pixel frequency 148.5MHz-40MHz respectively. For

more information, we can visit www.digilentic.com.

rgb2dvi_0

L” + RGB
aRst TMDS 4
PixelClk

RGB to DVI Vit;ieo Encoder (Source) (Pre-Production)

> hami_x

Figure 37. TMDS connected to hdmi_tx port

In this project design, this IP output pin, i.e. TMDS is connect to hdmi_tx port.

Page 26 of 70

http://www.digilentic.com/

va;H logictronix

PYNQ Z1 Video Processing Subsystem Feature Implementation

After adding and connecting all the necessary IPs, we finally complete the final IP block design.

We also do Regenerate Layout to display our block design in organized manner.

x Address Editor x

o Q s |+ & # C [of = Defaultview v
I

Diagram

e e X =

Figure 38. Regenerate Layout icon click

Finally, our project IP block design looks like as following;

200

0 Diagram % Address Editor X

@

ile e X = o Q : + © A, C o | = DefaultView v
5

@

@

]

]

@

E)

2

E

S

m

w

o

F

&

5

= ' — —

e mr— =
) 4 = H
&) :{ZYNQ. :

ToiConsole | Messages | Log | Repos | Desion Runs |

Figure 39. Final IP blocks

Page 27 of 70

- [logictronix

o7,

PYNQ Z1 Video Processing Subsystem Feature Implementation

Figure 40. Final Block Design

Page 28 of 70

{7 logictronix
- PYNQ Z1 Video Processing Subsystem Feature Implementation

Now, we have to Validate Design to find out possible errors and warnings in the early stage.

Diagram »* Address Editor *

@ a X & O Q s + = | C o Default View v

4

Figure 41. Validation Design

If there are no errors and no warnings, the validation will be successful. Otherwise, we have to
check all the hardware connections, clock connections, data width and IP customizations to

remove the errors and the warnings.
If validation check completes, we have to create HDL wrapper to create top HDL module.

Design Sources > design_1 > Right Click > Create HDL Wrapper

Reports Window Layout View Help O Quick Access
X = r Wb & 3 "3
E BLOCK DESIGN - design_1
~
Sources x Design | Signals Source Node Properties <

n

- - Open File

Qa = £ + e
Create HDL Wrapper.

~ [Design Sources (1)

design_1 (design_1.bd. View Instantiation Template

Constraints Generate Output Products...
~ [Simulation Sources (1) Reset Output Products...
[Lo AN oo

Hierarchy | |PSources Librari

Source File Properties

Remaove File from Project...
design_1.bd X !

< Disable File

G I | Properie:
enera LIS Hierarchy Update 3

C Refresh Hierarchy
TciConsole x Messages Li

Q = £ Il B E

IP Hierarchy »

Figure 42. Creating HDL Wrapper

Then, we let Vivado manage wrapper and auto-update. Then click on OK. By doing this, the

Vivado will automatically update top module, if IP block design is changed or modified.

¢ Create HDL Wrapper x

You can either add or copy the HDL wrapper fil to the project. Use copy
option if you would like to madify this file '

Options
) Copy generated wrapper to allow user edits

@ Let Vivado manage wrapper and auto-update

O]
\2) OK Cancel

Figure 43. Let Vivado manage wrapper and auto-update

Page 29 of 70

L. logictronix
- PYNQ Z1 Video Processing Subsystem Feature Implementation

Now, we have to add the constraint file that will be used for physical ports mapping with IP

block ports. For this, we follow,

Constraints > Right Click > Add Sources

Sources x Design Signals Board ?2_00
a z & +]
[Design Sources (1

> @ 2. design_1_wrapper (design_1_wrappery) (1

> Constraints
w [Simulation §

> osim_1 Hierarchy Update 3
> Utility Soure. ' Refresh Hierarchy
IP Hierarchy 3

Edit Constraints Sets
Edit Simulation Sets...

<
Hierarchy [P

Add Sources... I}A“*A

Source File Prope Report P Status O ox

design_1.bd -]
Figure 44. Add constraint file

This will pop-up Add Source dialog window, where we have to select Add or create constraints.

And then Next.

X
’ Add Sources
VlVﬁQp This guides you through the process of adding and creating sources for your project
(®) Add or create constraints
() Add or create design sources
() Add or create simulation sources
-
& XILINX
P

Figure 45. Add constraint dialog window

This now opens Add or Create Constraints dialog window. Here we can either locate the
constraint file (XDC file) or create our own constraints. After doing this, we click on Finish to

complete the addition of constraint in our project design.

Page 30 of 70

olo " .
- logictronix

o

PYNQ Z1 Video Processing Subsystem Feature Implementation

Add or Create Constraints

Specify or create constraint files for physical and timing constraint to add to your project.

constrs_1 (active) v

Use Add Files or Create File buttons below

Add Files Create File

Figure 46. Add or Create constraint dialog window

and block design port. Otherwise, bitstream generation will be failed.

Flow Navigator > Program and Debug > Generate Bitstream

Flow Navigator =8 ?

v IPINTEGRATOR
Create Block Design
Open Block Design

Generate Block Design

V¥ SIMULATION

Run Simulation

~ RTL ANALYSIS

> Open Elaborated Design

v BYNTHESIS
P Run Synthesis

> Open Synthesized Design

~ IMPLEMENTATION

P RunImplementation

> Open Implemented Design

v _PROGRAM AND DEBUG

¥ Generate Bitstream |

> Open Hardware Manager

Figure 47. Starting Generation of bitstream

After this, we have to check constraints. There should be no error mapping between physical port

After making everything well, we can now generate bitstream. We can directly follow

Page 31 of 70

L. logictronix
- PYNQ Z1 Video Processing Subsystem Feature Implementation

After that, we should hit Yes if it pops-up the messages saying synthesis or implementation result
not available. In other words, if there is no synthesis or implementation result, the Vivado will

automatically generates them one-after-another before generating bitstream.

We can use TCL command to instantiate the bitstream generation.

launch_runs impl_1 -to_step write_bitstream -jobs 2

If everything goes well, bitstream generation is started. And we have to wait until it is completed.

If bitstream generation is completed, we can now proceed to SDK part. For this, we first have to
export the hardware specification file. Since we use Vitis 2020.1 software tool, it has different

approach to export hardware file.
First, we follow this step for export.

File > Export > Export Hardware

File Edit Flow Tools Reports Window Layout View

o
Project » _® & " L -
I Add Sources... BLOCK DESIGN - PYNQ_Z1_VF
Close Project

Sources Design ®x Si

Q "=

W rgb2dvi_0 (RGBE to DVI
RGB

Save Block Design As...

Close Block Design

TMDS
= aRst
= PixelClk
Checkpoint ' > rst_ps7_0_50M (Proce
1P 3 > v_axids_vid_out_1 (AX]
Text Editor 3
Properties
Export Export Hardware...
Print... Export Block Design...
. Export Bitstream File...
Exit
. - — Export Simulation...
¥ IMPLEMENTATION TclConsole . Messape:

Figure 48. Exporting hardware specification
This pops-up Export Hardware Platform dialog window as following. Here is some brief about

hardware export.

Page 32 of 70

5

-l loQictronix
. PYNQ Z1 Video Processing Subsystem Feature Implementation

4 Export Hardware Platform X

Export Hardware Platform

VIVADO!

HLx Editions This wizard will guide you through the export of a hardware platform for use in the Vitis or Petalinux
software tools

To export a hardware platform, you will need to provide a name and location for the exported file and
specify the platform properties

Platform type

® Fixed
A platform supporting embedded software development only.

) Expandable
A platform supporting acceleration.

& XILINX

Figure 49. Platform type selection window

Under Platform type, we have to select the Fixed type because, we are developing Embedded

Software. Then we click on Next.

Now, Output dialog window opens, where have to select Include bitstream output option.

Because, our software application requires hardware specification.

4 Export Hardware Platform X

Output

Set the platform properties to inform downstream tools of the intended use of the target platform’s hardware design '

() Pre-synthesis
" This platform includes a hardware specification for downstream software toals

@ Include bitstream
This platiosm includes the complele hardwars

nd.bitstream, in-addition to.the hardware specification.for

software tools

Figure 50. Output type selection window

Then click on Next. This opens another window as shown in image below.

Page 33 of 70

{7 logictronix

PYNQ Z1 Video Processing Subsystem Feature Implementation

Export Hardware Platform ®

Files

Enter the name of your hardware platform file, and the directory where the XSA file will be stored ‘

KXSAfile name: |

Export to; B

The X8A will be written to: \xsa

Figure 51. XSA File selection window
The hardware specification is exported as XSA file. So that, under this window, we have to enter
the valid xsa file name and the valid directory. In this directory, our xsa file will be exported. To

locate the directory, we can Browse the location. And after this, we click on Next.

After this, information dialog window is opened, where we click on Finish to complete the

hardware export.

If everything goes well, the hardware export is successful. So, we can now proceed to software

design section.

Page 34 of 70

L. logictronix
- PYNQ Z1 Video Processing Subsystem Feature Implementation

SOFTWARE DESIGN

For the software design, we use Vitis Unified Software Development Platform 2020.1. As for
introduction, the Vitis unified software platform is a new tool that combines all aspects

of Xilinx software development into one unified environment.

It enables the development of embedded software as well as accelerated applications on
heterogeneous Xilinx platforms including FPGAs, SoCs, and ACAPs. For more details, we can visit

www.Xxilinx.com:.

This section divulges software design flow and software application coding as following.
A. DESIGN FLOW

In this sub-section, we go through all the steps involved while creating software platform and

application projects.

1. After the exporting the hardware specification, we launch the Vitis IDE from Vivado IDE by
following steps;

Tools > Launch Vitis IDE

Eile Edit Flow Tools Repors Window Layout View Help

'=‘ - [validate Design

Create and Package MNew IP... IF

Create Interface Definition...

 IPINTEGRATOR Enable Dynamic Function eXchange...
Create Block Des Run Tel Script...
Open Block Desig Property Editor Ei
Cenerate Black D Associate ELF Files...

Generate Memory Configuration File...

v SIMULATION Compile Simulation Libraries...
Run Simulation XHub Stores...
Custom Commands 3

v RTLANALYSIS Launch Vitis DE

» Open Elaborated -
Language Templates

B o

Settings...

v SYNTHESIS
Figure 52. Launching Vitis 2020.1
This launches the Vitis IDE onward.

2. During this launching, the Vitis pops-up a dialog window as shown below to select directory

for workspace. Because, Vitis uses this directory to store the development artifacts.

Page 35 of 70

http://www.xilinx.com/

. logictronix

PYNQ Z1 Video Processing Subsystem Feature Implementation

«J Eclipse Launcher

Select a directory as workspace

Witis IDE uses the workspace directory te store its preferences and development artifacts,

Workspace: | |

[Use this as the default and do not ask again
» Restore other Workspace

» Recent Workspaces

Launch

Figure 53. Workspace directory selection

X

Browse...

Cancel

We have to set the directory in the workspace directory field. We can also click dropdown to

see previously used directories. We can select one of these for workspace. However, we can

also Browse to locate our desired workspace directory.
Then we click on Launch to start the Vitis IDE completely.

3. Now, the Vitis IDE opens its welcome page at the beginning.

File Edit Search Xilink Project Window Help

& | O Welcome 53

W XILINX

a VITIS

VITIS
IDE

—— ——
PROJECT PLATFORM
Create Application Project Add Custom Platform

Create Platforrn Project

Create Library Project

Import Project

Figure 54. Vitis welcome page

RESOURCES

itis Documentation

Xilirx Developer

4. Welcome page has various selection options, out of which we first go through Create

Platform Project. This opens Create new platform project dialog window.

Page 36 of 70

{7 logictronix
- PYNQ Z1 Video Processing Subsystem Feature Implementation

~ New Platform Project O X

Create new platform project
Project name must be specified

Project name: |

D:\LogicTronix\vitis Erowse

Platform System « A system project s a container for multiple
Project Project applications that would run on different domains of a

platform at the same time.

- A domain is the BSP/OS that controls one or more
isomorphic processors.

Processor U — Domain — App
A = A platform contains one or more domains.

- Aworkspace can contain unlimited platforms and
XSA unlimited system projects

@ < Back Next > fEm T

Figure 55. Create new platform project window

Here, we specify Project name and it location. By default Vitis uses default location to store

platform project. While giving the project name, there should be no space and special

" " ou

characters [except and "-"] in the name. We must also check the project name length

and directory path length. Because, windows OS only supports 255 characters.
Then, click on Next.
5. Now, another dialog window is opened to create platform project from hardware

specification or to create platform project from existing platform.

 New Platform Project u] X

Platform Project
Create new platform project

Create a platform project from the output of Vivado [Xilinx Shell Archive (XSA)] or from an existing platform. A platfarm will enable you to specify options for
the kemels, BSPs, as well as settings required for creating new applications. Platforms are currently supperted for embedded software developers.

(®) Create from hardware specification (XSA)

Create a new platform project from a hardware specification file. You can specify the OS and processor to start with. The platform can be customized
later from the platform project editor.

() Create from existing platform

Load the platform definition from an existing platform. You can choose any platform from the platform repository as a base for your platform project.

@ <Back En Eoeed

Page 37 of 70

o

. loQictronix
PYNQ Z1 Video Processing Subsystem Feature Implementation

We select first option. Because, we create new platform project from our exported hardware
specification.
Then go to Next.

This opens another window, where we have to locate our exported hardware specification or

«J New Platfarm Project m] %
Platform Project Specification
Provide the hardware and software specification for the new platform project
Hardware Specification
X84 fie: [Browse...
Software Specification
Operating system: ~
Processor: ~
@ B || et <

Figure 56. Locating exported hardware specification (XSA file)
Here, we have to browse to locate our XSA file. By doing this, the software specification is
automatically selected.
Then we go to Finish.
Now, the platform project is successfully created. And Vitis IDE is opened.
Initially, the platform project is out-of-date. So, we must build before creating application
project. Project build is done by

Explore > Right click on platform project > Build Project

Page 38 of 70

o

-[I7. logictronix

PYNQ Z1 Video Processing Subsystem Feature Implementation

Eile Edit Search Xilinx Project Window Help

TR T RE SIS NP A -F-1 HEREREN

~ Explorer EX{] BBt = 8 ‘Wd vpss 1
v E| vpss (Out-of-date) |
= bitstream New > BB
g :):Wt Paste Crl+¥ I'F-date
= logs 3 Delete ZZ?‘(
(2= psT_cortexa9 0 | Refresh ard St
g :;:i;z: g3 Import Sources... ‘:I::;
«J platform.spr iy Export as Archive
Build Project
Clean Project %
«J Copy referenced files into project
77 Update Hardware Specification
d Assistant B8 = Team ’
vpss [Platform] Run A g
Debug As >
Properties
MMTe

Figure 57. Platform project build
There should be no error while building product. Otherwise, we have to check our hardware
specification.

9. After building platform project, we create application project by following;

File > New > Application Project

File Edit Search Kilinx Project Window Help

Mew Alt+Shift+M > ™ Application Project... L\\,
Open File... == Library Project...
Close CtrlsW Hw Kernel Project...
Close Al CteShiftew | Platform Project..
Save CtrleS [Other.. Ctrl+N
Save As... v {} ps7_cortexad_0
= fshl

Save Al Ctrl=Shift+S v [oynq fs

|Z| Board 5u)
Move... ~ [3 standalone ¢
Rename... F2 =) Board Sy
Refresh F5
Import...
Export...
Properties Alt+Enter
Switch Workspace R —
Restart ¥ =08
Exit

Figure 58. New applicatio project creation

Page 39 of 70

logictronix

PYNQ Z1 Video Processing Subsystem Feature Implementation

10. Now, a dialog window is opened.

) New Application Project

o x
Platform
Choose a platform for your project. You can also create an application from XSA through the ‘Create a new platform from hardware (XSA)' tab.
Select a platform from repository | (17 Create a new platform from hardware (XSA)
Name Board Flow Vendor Path
[E5 vpss [custom] [N pyng-z1 Embedded SW Dev xiliruc D:\LogicTronix
< >
Platform Info
General Info Acceleration Resources Domain Details
~
Name [ws | " The selected platform does not have application Domains
capabilties Domain name Details
) 7 -
Part Xc7z020clg400-1 on ps7_corte.. | CPU: psT_cortexa8 01
Family [zyng
Description:
[imee 1 v v
< >
>
@

<Back Finish Cancel

Figure 59. Platform selection window

Here, we select platform project that was initially created. Under this window, we can also

create platform project here, if we initially create application project.

Then we click on Next.

11. After this, another window is popped-up, where we set our application project name.

=« New Application Project [m] X
Application Project Details

Specify the application project name and its system project properties E

Application project name: | vpss_appl

System Project
Create a new system project for the application or select an existing one from the workpsace (]
Select a system project System project details
- Create new...
System project name: | vpss_app_system
Target processor
Select target processor for the Application project.
Processor Associated applications
ps7_cortexad_0 vpss_app
Shew all processors in the hardware specification [[i]
2
@

<Back Einish Cancel

Figure 60. Setting project name

Here, we give the application project in such a way that it should contain any space or special

characters except '_' & '-".

Then we proceed Next.

Page 40 of 70

L. logictronix
- PYNQ Z1 Video Processing Subsystem Feature Implementation

12. Now, Domain dialog window is opened. We do not do anything here. Because, domain is
already specified by default. Therefore, we can directly proceed Next.

13. This time, Template dialog window is opened.

+J New Application Project o X

Templates
Select a template to create your project.

Available Templates:

o B B Heto Word

v SW development templates Let's say 'Hello World'in C.
Dhrystone
Empty Application
Empty Application (C++)
Hello Worl
IwlP Echo Seiver
IwlP TCP Perf Client
IwlP TCP Perf Server
IwlP UDP Perf Client
IwlP UDP Perf Server
Memory Tests
OpenAMP echo-test
OpenAMP matrix multiplication Demo
OpenAMP RPC Demo
Peripheral Tests
RSA Authentication App
Zyng DRAM tests
Zynq FSBL

()
I
=

i
5
o

Figure 61. Application template selection
Here, we select one of the available templates. Since we are developing standalone
embedded application, we choose either Empty Application or Hello World software

template.

Here is the note that we can select any available software application templates between
these templates. Only the difference, in empty application, user has to add everything, such
as, platform codes for the project whereas hello world project has everything for starting new
project. It is likely a ready to use project. User can write or import the programs directly. And

if project build is successful, user can quickly launch the application.

Then we click on Finish to complete the application project creation.

Page 41 of 70

{7 logictronix

PYNQ Z1 Video Processing Subsystem Feature Implementation

File Edit Search Kilix Broject Window Help

g~ [B~ R-H-0 V- DI DD
L Explorer 23} B S Y= O |[efves X vpss_app_system
v hal vpss % Application Project Settings
(= bitstream
(= eport —
o o eneral
(= logs Project name: vpse app
(= ps7_cortexad 0 A
i Platform: vpss
«J platform.spr) =
[vps b syt [vp55] Domain: standalone on ps7_cortexsd_0
v {3} vpss_spp [standzlone on ps7_cortexag 0] CPU:
) Includes = =
i
o _ide

& vpss_app.pri
2 vpss_spp_system.sprj

o Assistant 231 ER&/% 0% =08

vpss [Platform]
(=% vpss_app_system [System]

% vpss.app 32

Hrduware Specification; View processors, memory ranges and peripherals.

(kA [e D
= O ||g= Outline = 8

An outline is not available.
Active build configuration: Debug | &%

Options

View current BSP settings, or configure settings like STDIO peripheral selection, compiler flags,
SWintrusive profiling, add/remove libraries, assign drivers to peripherals, change versions of
OS/libraries/drivers etc.

Navigate to BSP Settings

B Cansole z@]l'_ Problems [Z] Vitis Log (i) Guidance

A MBE-0-=0

Build Console [vpss_app, Debug]

Figure 62. Vitis IDE.

This is what Vitis IDE looks like after we create platform project and application project.

Now, we can proceed to write our software application code. This is included in software

application design section.

B. SOFTWARE APPLICATION DESIGN

After successful application project creation, we can write either our own code or import other

codes. In this project design, we write code ourselves. To code ourselves, we have to create c-

programming file (.c file). We create this file by following steps;

Explorer > Application Project > src > Right Click > New > File

Page 42 of 70

o

olo " .
- logictronix

—i PYNQ Z1 Video Processing Subsystem Feature Implementation

(= psT_cortexad 0
(2 resources
= zynq_fsbl
 platform.spr
~ [] vpss_app_system [vpss |
{8} vpss_app [standalone on psT_cortexad_0

) Includes
vzt
& New
B E copy
(B
E Paste
5 % Delete
2 d &1 Refresh
5 fﬂ:‘: 229 Import Sources...
) Source
o Assistant 53 (s
Rename...
vpss [Pl
P upssapp e
Properties

Ctrl+C
Ctrl+V/

L Explorer 13 | BG 7= 0 |[wwps &vpseppsstem [Kves
= export = S c o
= b # Application Project Settings
= logs

General
Project name: ypss app
Platform: ypss | -

Runtime: C/C++

Domain: standalone on ps7_cortexad

> Project...

File %

Folder 3

1 G o

Application Project...
Hw Kernel Project...
Library Project...
Platform Project.

Example.

B]

Other...

Figure 63. Adding new file to project

This will pop-up New File dialog window, where we give programming File Name.

«) New File

File

Create a new file resource,

Enter or select the parent folder

vpss_app/src

1=+ RemotebysternsTempFiles
=5 vpss
V= vpss_app [standalone on ps7_cortexad 0]
24 _ide
(= src
== vpss_app_system [vpss]

File name: | main.c

Advanced > =

@

Figure 64. Setting file name with extension

Here, we give file name with extension .c, i.e. main.c. Then we click Finish.

Now, this creates main.c programming under src. We can also create header file by following

same procedure. But only we have to do is to set extension .h. We can create as many files as

required.

Page 43 of 70

‘»Lf;,f logictronix

PYNQ Z1 Video Processing Subsystem Feature Implementation

Software Application

Peripherals

Laver 2

Configuration
Clocking wizard
configuration

Laver 1
TPG configuration
Read User Input
FRC Menu
CSC Menu
Scaling Menu

Xilinx Hardware

Figure 65. Software Application Architecture

The above diagram represents three level software application architecture. At the top level, i.e.
layer 3, the main function resides, from where software application starts. The main function
becomes entry point. It has instances for peripheral and main menu display, which then calls
layer 2 functions. In layer 2, all the peripherals initialization instances are loaded, which then calls

layer 1 to initialize each and every peripherals and finally configures these peripherals, which

Page 44 of 70

L. logictronix
- PYNQ Z1 Video Processing Subsystem Feature Implementation

then configures Xilinx hardware through drivers. So that, application starts working. In meantime,
layer 2 main menu function displays main menu on the terminal and background process runs
to read the user input and to display corresponding sub menus. When user gives input, such as,
TPG pattern selection, resolution selection, and color format selection and so on, the
corresponding peripheral is configured and finally hardware is updated to give output. And
corresponding menu is also displayed on the terminal and again background process runs to

take other user input.

The details of all the functions of this software design are mentioned below.

19 init_periphs{&app_periphs);

28 init_application(&app_periphs);
22 while (1) {

23 MainMenu(&app_periphs);

24 mainMenustate (&app_periphs);

=]}

The above code snippet is taken from main function. Upon execution, this function calls following

functions;

1. init_periphs(&app_periphs)
2. init_application(&app_periphs)
3. MainMenu(&app_periphs) and mainMenuState(&app_periphs)

Where, app_periphs is the structure variable that is declared as following;

8 app_periphs_t app_periphs;

app_periphs_t is the structure that is declared in header file. The following code snippet shows

structure declaration.

535= typedef struct {
6 XVtc Fvtc_ptr;
XVprocss *Wproc_ptr;
XV_tpg *tpg_ptr;
tpg_config t tpg_config;
video_pipe_config_t wideo_pipe_config;
} app_periphs_t;

a
3]

=

0O oo 00 o
F o W o d C

The structure is so declared because, it keeps all the different peripherals in a single entity, which

then helps to manage video processing pipe and its stream parameters.

Page 45 of 70

logictronix

PYNQ Z1 Video Processing Subsystem Feature Implementation

1. init_periphs(&app_periphs) function is used to initialize all the peripheral devices.

This includes initialization of test pattern generator (TPG), video timing controller (VTC) and video

processing subsystem (VPSS) IPs.

The following code snippet represents the initialization of peripheral devices.

B
[N
: b}

a
8
9
8
5
2
3
A

/*Device pointer initialization*/
periphs_ptr-»tpg ptr = &tpg inst;
periphs_ptr-»Vtc_ptr = &VtcInst;
periphs_ptr->Vproc_ptr = &WprocInst;

/*Initialization of TPG*/
Status = XV_tpg Initialize(periphs_ptr-»tpg_ptr, XPAR_V_TPG_@ DEVICE_ID);
if (Status != XST_SUCCESS) {

xil_printf("TPG configuration failed\rin");

return (XST_FAILURE);

}

/*Initialization of wvtc*/

¥vtc_Config *WTC_Config = Xvtc_LoockupConfig(XPAR_V_TC @ DEVICE_ID);

Xvtc_CfgInitialize(periphs_ptr->Vtc_ptr, VWTC_Config,
VTC_Config->BasefAddress);

/*initialization of wpss*/
KVprocss_Config *VprocSsConfigPtr = XVprocSs_LockupConfig(
XPAR_V_PROC_S5_@ DEVICE_ID);
if (VprocssConfigPtr == NULL) {
xil_printf{"ERR:: VprocSs device not found\rin™);
return (XST_DEVICE_NOT_FOUND);
¥
XVprocss_SetFrameBufBaseaddr (periphs_ptr-»Vprec_ptr, vprocss_buff);
Status = XVprocSs_CfgInitialize(periphs_ptr->Vproc_ptr, VprocSsConfigPtr,
VprocSsConfigPtr-»BaseAddress);
if (Status != XST_SUCCESS) {
XVprocss_LogDisplay(periphs_ptr->Vproec_ptr);
xil_printf{"ERR:: Video Processing Subsystem Init. errorinir");
return (XST_FAILURE);

}

XVprocss_LogReset(periphs_ptr->Vproc_ptr);

XVprocSs_LogReset() function resets the VPSS log. So that, when VPSS starts working, all its

related log information are stored in the log file.

2. On the other hand, main function invokes init_application(&app_periphs) function

after successful initialization of peripherals to configure them first and then they are started. So

that, the application starts working.

Page 46 of 70

L logictronix

PYNQ Z1 Video Processing Subsystem Feature Implementation

457 const XVidC VideoTimingMode *WmPtrIn, *VmPtrOut;

458

459 /*configuration of input stream parameters®/

468 VmPtrIn = XVidC GetVideoModeData(videoModes[4]);

461 periphs_ptr-»video_pipe_config.Stream_in.Timing = WVmPtrIn->Timing;
462 periphs_ptr-s>videc_pipe_config.Stream_in.VmId = VmPtrIn->VmId;

463 periphs_ptr-»videc_pipe config.Stream_in.ColerFormatId = cfmt[@];
464 periphs_ptr-»>video pipe_config.Stream_in.ColerDepth =

465 periphs_ptr->Vproc_ptr->Config.ColorDepth;

466 periphs_ptr-»videc_pipe config.Stream_in.PixPerClk =

467 periphs_ptr-»Vproc_ptr-»Config.PixPerClock;

468 periphs_ptr-s>videc_pipe_config.Stream_in.FrameRate = VmPtrIn->FrameRate;
463 periphs_ptr-»videc_pipe config.Stream_in.IsInterlaced = @;

176

i)

W00 s W s kg

"

/*configuration of output stream parameters™®/
VmPtrout = XVidC_GetVideoModeData(videoModes[4]);
periphs_ptr-»videc_pipe config.Stream_out.Timing = VmPtrOut->Timing;
periphs_ptr-»>video pipe_config.Stream out.VmId = VmPtrOut->VmId;
periphs_ptr-»video_pipe_config.Stream_cut.ColorFormatId = cfmt[@];
periphs_ptr-»videc_pipe config.Stream_out.ColorDepth =
periphs_ptr-»Vproc_ptr->Config.ColorDepth;
periphs_ptr-»videc_pipe_config.Stream_cut.PixPerClk =
periphs_ptr-»Vproc_ptr-:Config.PixPerClock;
periphs_ptr-»videc_pipe config.Stream_out.FrameRate = VmPtrOut->FrameRate;
481 periphs_ptr-»video_pipe_config.Stream_out.IsInterlaced = @;

AsT

The above lines of code are written to set the input and output stream parameters, such as, video
mode/video resolution, its timing, color format, color depth value, pixel clock, frame rate and
video format. These parameters are stored in the structure pointer variable periphs_ptr so that

it can later be used to configure the input/output stream of video processing subsystem IP.

/*tpg configuration parameters®/

periphs_ptr-»>tpg config.colorFormat =
periphs_ptr-»video_pipe_config.S5tream_in.ColorFormatId;

periphs_ptr->tpg config.bckgndId = XTPG_BKGND COLOR _BARS;

periphs_ptr-:tpg config.overlay_en = 1;

periphs_ptr->tpg_config.motionSpeed = 1;

periphs_ptr-»>tpg_config.boxSize = 5@;

490 periphs_ptr-»>tpg_config.height =

431 periphs_ptr-»video pipe config.Stream_in.Timing.VActive;
492 periphs_ptr-:tpg config.width =

493 periphs_ptr-»video_pipe_config.Stream_in.Timing.HActive;
494 periphs_ptr->tpg_config.Interlaced =

495 periphs_ptr->video_pipe_config.Stream_in.IsInterlaced;

The above lines of code are written for TPG configuration parameters. This is also stored in
structure pointer variable periphs_ptr, which is later used for the configuration of TPG IP

parameters.

483 /* Clocking Wizard Configuration */
434 ClkWiz_Set Output_Clock(XPAR_CLK WIZ_® BASEADDR, videoTiming[@]);

The above line of code is written for the configuration of clocking wizard. As it is already
discussed in hardware section, this IP is used to generate output video timing signal according
to output video mode selection. This function sets clocking wizard's output clock, based on the

clock frequency value stored in the videoTiming[] array variable. Its timing value is strictly

Page 47 of 70

o], . .
{7 logictronix
- PYNQ Z1 Video Processing Subsystem Feature Implementation

according to videoModes[] variable. videoMode array variable has definite arrays of video
resolution and corresponding to it, videoTiming arrays variable has array of pixel clock frequency

value.

[*Configuration of VPSS*/

configure_wvpss(periphs_ptr->Vproc_ptr,
&periphs_ptr-»videc_pipe_config.Stream_in,
&periphs_ptr-»>videc pipe cenfig.Stream out);

LR

LI~~~)
C R @

(v

Through these lines of code, the VPSS IP is configured based on the topology or functionality
mode selected in the hardware. It uses input and out stream parameters to configure this IP's

input and output stream and finally if configuration is successful, the VPSS starts working.

/*Configuration of TPG*/

configure_ tpg(periphs_ptr-»tpg ptr, &periphs_ptr->tpg config);
XV_tpg_EnableAutoRestart(periphs_ptr->tpg_ptr);
XV_tpg_Start(periphs_ptr->tpg ptr);

un

o
[~~~]
O ~] o T

[T

These above lines of code are written to configure the TPG IP parameters, such as, height, width,
color format, overlayld, background pattern, video format etc...These all parameters are retrieved

from &periphs_ptr->tpg_config.

After this, TPG is started. Following code snippet is taken from configure_tpg() function.

'/ Set Resolution
XV_tpg Set_height(tpg ptr, tpg_config-rheight);
XV _tpg_Set_width(tpg_ptr, tpg_config-»width);

W ka2 ®

4

/ Set Color Space
XV_tpg Set_colorFormat(tpg_ptr, tpg config-:colorFormat);

oh i

// Change the pattern to cclor bar
XV_tpg_ Set bckgndId(tpg ptr, tpg_config->bckgndId);

o~ I I e R R o)
;

//setting video format i.e interlaced or progressive
XV_tpg_Set_Interlaced(tpg_ptr, tpg_config->Interlaced);

ol il el
T W ofa b = ® W CD =

if (tpg_config-roverlay en) {
// Set overlay to moving box
'/ set the size of the box
XV_tpg_Set_boxSize(tpg_ptr, tpg config-:boxSize);
// set the speed of the box
XV_tpg_Set_motionSpeed(tpg_ptr, tpg_config-»moticnspeed);

dold bl Ll Ll ld L ld L Ll Ll L

A & W oD~

O
n -

XV_tpg_Set_ovrlayId(tpg ptr, tpg_config-overlay_en);

Now, this time video timing controller (VTC) has to be configured. Because, VTC must generate

the video timing signal based on the output stream video mode.

518 /*Configuration of WTC*/
511 configure_wtc_gen(periphs_ptr-»Vitc_ptr,
512 &periphs_ptr-»>videc pipe cenfig.Stream out);

Page 48 of 70

L. logictronix
- PYNQ Z1 Video Processing Subsystem Feature Implementation

Above line of code is written so that VTC generates video timing signal according to video mode
retrieved from &periphs_ptr->video_pipe_config.Stream_out pointer variable. After setting

timing parameters, the VTC starts generating timing.

When we go inside configure_vtc_gen() function, we get following codes for VTC timing
parameter configuration.

XWtc_Reset(InstancePtr);
Xvtc_DisableGenerator(InstancePtr);
Xvtc_Disable(InstancePtr);

Xvic_Timing Xvitc_Timingconf;

Xvitc_Timingconf.HActiveVideo = Strm->Timing.HActive;
Xvitc_Timingconf.HBackPorch = Strm-»>Timing.HBackPorch;
Xvitc_Timingconf.HFrentPorch = Strm->Timing.HFrontPorch;
Xvitc_Timingconf.HSyncPolarity = Strm->Timing.HSyncPolarity;
Xvtc_Timingconf.HSyncWidth = Strm->Timing.HSyncwWidth;
Xvtc_Timingconf.Interlaced = Strm->IsInterlaced;
Xvtc_Timingconf.VeBackPorch = Strm->Timing.F@PVBackPorch;
Xvtc_Timingconf.V@FrentPorch = Strm-:Timing.FePVFrontPorch;
Xvtc_Timingconf.VesSynchidth = Strm->Timing.F@PVsynchidth;
Xvtc_Timingconf.V1lBackPorch = Strm->Timing.FlVBackPorch;
Xvtc_Timingconf.V1FrentPorch = Strm->Timing.F1VFrontPorch;
Xvtc_Timingconf.V1Synckidth = Strm-:Timing.FLlVSyncWidth;
Xvtc_Timingconf.VActiveVideo = Strm->Timing.VActive;
Xvtc_Timingconf.VSyncPolarity = Strm-:>Timing.VSyncPolarity;

= M o m o oo
S <~ N T o TR (R T [S N Iy S]

iy iy Qe iy iy Ry Ry ey
nn

Py}

//Configure the VTC
XWtc_SetGeneratorTiming(&VtcInst, &XVic Timingcont);
XWtc_RegUpdate(InstancePtr);

//5tart the VTC generator
XWtc_Enable(InstancePtr);
XWtc_EnableGenerator(InstancePtr);

L b L b Ll ld g b gl L Ll g L
& WO o J oWl s R

00 0O 00 00 00 C0 00 00 00 0
WoCa s W o W R

Up to here, the project starts working initially with default stream parameters as discussed before.

Now, for the user action, input/output messages are printed on the terminal. Through this, user
will be able to monitor and enter the input to select various VPSS feature as output. These all are

discussed below.
3. MainMenu(&app_periphs) and mainMenuState(&app_periphs)

These functions are used to display menu on the terminal. Main menu function displays main
menus and menu state function reads user input value and executes configuration functions to
update the video processing pipe parameters thereby changes the output. Menu state function

also loads other submenus and status messages to give information about current hardware

Page 49 of 70

logictronix
PYNQ Z1 Video Processing Subsystem Feature Implementation

configuration. All menus and their menu states are executed within infinite loop statement.

Therefore, the messages and configuration are carried over and over again as per user input.

All the menu display is discussed in the output section. But for now, terminal message consists

of following options
TPG Pattern Selection

It allows user to select different available TPG patterns. But it should be noted that the patterns
availability is only possible as long as different background pattern types are selected in the TPG

IP hardware block.

When user select this option, sub menu function is executed, which displays various pattern list
menu and corresponding menu state function waits infinitely until the user enters any input. If
user selects BACK2MENU option, TPG menu & its state are terminated. Otherwise, menu state
function takes that input according which background pattern ID is loaded upon TPG by invoking

configure_TPG() menu. And hence user selected TPG pattern is displayed.

Following shows TPG pattern selection code snippet.

P

while (1) {
printTPGMainMenu(periphs_ptr);
userInput = readUserInput();

if (userInput != BACK2ZMENU) {
tpgMainMenuState(periphs_ptr, userInput);
} else {
break;
¥

Woha = R0 0O s O

P

Ll g bbb L RO RO R R RS R
T 2 c :

[
e

Scaling

This option allows user to explore VPSS scaling feature. It allows user to scale up or scale

down the video by setting input and output video resolution parameters.

When user selects this options, it displays scaling menu, which allows user to set either
input resolution or output resolution. When user selects one of the options, it displays
list of pre-defined resolution value. Here, user can select one of the resolutions by giving

input. And by doing so, corresponding menu state takes that input and then invokes either

Page 50 of 70

logictronix
PYNQ Z1 Video Processing Subsystem Feature Implementation

input stream configuration function or output stream configuration function. That is,
set_input_parameters() or set_output_parameters() functions. By invoking first
function, it configures TPG parameters and VPSS input stream resolution. Similarly, by
invoking second function, it configures VPSS output stream resolution and clocking wizard
output clock according to selected output resolution. Finally, scaled version of video is

displayed on the monitor.
For better understanding, we can check this example;

If input and output streams are selected to 720p and 1080p respectively, then 720p video

is scaled up to fit 1080p at the output.

If input and output streams are selected to 1024p and 480p respectively, then 1024p

video is scaled down to fit 480p at the output.
For more information about scaling, we can visit VPSS product guide PG231.

Following code snippet shows top level scaling menu operation.

L

£ W pa = & W0

while (1) {

P

printScaleMainMenu(periphs_ptr);

fa

P

userInput = readUserInput();

fa

45 if (userInput != BACKZMENU) {

46 scaleMainMenuState(periphs_ptr, userInput);
47 } else {

48 break;

49 }

Color Space Converter(CSC)

This option allows user to set color format for input and output video stream amongst
available four color formats, for example, RGB, YUV4:2:0, YUV4:2:2 and YUV4:4:4. User
can select option to set the color format for either input video stream or output video
stream, for which set_input_parameters() or set_output_parameters() functions are
again invoked respectively. By invoking first function, it configures TPG color format and

VPSS input stream color format. Similarly, by invoking second function, it configures VPSS

Page 51 of 70

logictronix
PYNQ Z1 Video Processing Subsystem Feature Implementation

output stream color format. Finally, different color format video is displayed on the

monitor.
For better understanding, we can check this example;

If input and output stream color format are selected to RGB and YUV4:2:0 respectively,

then RGB video is converted to YUV4:2:0 format at the output.

If input and output streams are selected to YUV4:4:4 and RGB respectively, then YUV4:4:4

video is converted to RGB format at the output.
For more information about CSC, we can visit VPSS product guide..........ccocoonnnrirennee

Following code snippet shows top level CSC menu operation.

while (1) {
printColorFormatMainMenu(periphs_ptr);

userInput = readUserInput();

O 0 W1 W1 W W N
SR~ T R R |

if (userInput != BACK2MENL) {
cscMainMenuState(periphs_ptr, userInput);
} else {
break;
}

Tooh O
P

[s
Y

o
un

oo
o
e

Frame Rate Converter (FRC)

This option allows user to set frame rate for input and output video. User can select option
to set the frame rate for either input video stream or output video stream, for which
set_input_parameters() or set_output_parameters() functions are again invoked
respectively. By invoking first function, it sets frame rate for particular input stream
resolution currently selected in VPSS. Similarly, by invoking second function, it sets frame
rate for particular output stream resolution currently selected in VPSS. And clocking wizard
is also configured to generate corresponding pixel clock. Finally, output video is displayed

on the monitor.
For better understanding, we can check this example;

If input and output stream color format are selected to 1080p@30Hz and 1080p60Hz

respectively, then 30Hz frame rate video is converted to 60Hz at the output.

Page 52 of 70

o], . .
L. logictronix
- PYNQ Z1 Video Processing Subsystem Feature Implementation

For more information about FRC, we can visit VPSS product guide.........ccccoevvvirirrennnnene.

Following code snippet shows top level FRC menu operation.

-

while (1) {

-

.__]

printFRCMainMenu(periphs_ptr);

wd

userInput = readUserInput();

d

o

if (userInput != BACK2MENU) {

FRCMainMenuState (periphs_ptr, userInput);
b else {

break;
}

~d

~d

d R b ® W0 s DWW R

== R e R]

NOTE: This project design is confined to support 60Hz output video because of test
monitor compatibility. Therefore, user has to write their own codes to support other
output frame rate.

while (1) {

printReportMenu(periphs_ptr);

userInput = readUserInput();

WD W0 W0 00 00 00 Ca
W k= ® W0 s Y

if (userInput != BACKZMENU) {
ReportMenustate(periphs_ptr, userInput);

a4 } else {
95 break;
96 }
97
98 }

VPSS Report

This is the final main menu option. This option can be used to debug the VPSS. Besides
this, it also give detailed information of configuration of project design. This menu has

four sub menu options, for example,

e VPSS Input/output Configuration

It shows the current VPSS input output stream configuration.
e VPSS Core Information

It shows the sub-cores that are included in under VPSS topology
e VPSSlog

It shows all the VPSS event info and error.

e /PSS Mode Status

Page 53 of 70

va;H logictronix

PYNQ Z1 Video Processing Subsystem Feature Implementation

It shows status of scaling, CSC & FRC.

Page 54 of 70

ofo .)
- logictronix
- PYNQ Z1 Video Processing Subsystem Feature Implementation

CHAPTER 3: OUTPUT

After software design is completed, we can now head for implementation of project on PYNQ-

Z1 board. To program the board from computer, we have to set the jumper (JP4) to JTAG mode.

Figure 66. Program jumper setting
Before connecting to computer, we have to check jumper setting (JP5). If we want to power and
program the board by using single mini usb cable, we must change jumper to USB mode. By

then, board is programmed and powered from same computer. We need to power ON the

power, if it is already not done so.

Figure 67. Power jumper setting

After connecting board, we need to prepare software application by building it. If it is successful,

then it can be programmed.

But before launching the application, we can use to Vitis IDE built-in Terminals. We can also use

External Terminals like PuTTY, Tera Term etc...
To add terminal in Vitis IDE, we have to follow steps;

Window > Show View

Page 55 of 70

- logictronix

PYNQ Z1 Video Processing Subsystem Feature Implementation

x Project | Wind
- s

©mE e

ss]
one on ps7_{

O 2 &)

ow Help
Explorer
Assistant
Vitis Log
Console
Guidance

Show view...

s

Design Perspective
Debug Perspective
Performance Analysis Perspective
Open perspective...
Reset Perspective...

Preferences

This opens show view dialog window, where we have to scroll to find Terminal. Then, we need to

expand it to select Terminal and then Open it.

«J Show View

type filter text

(=
(=)

(= Debug
= Git
(= Help

ava
ava Browsing

= Make
[= Plug-in Development
= Prefiling
[Remote Systems
= Team
v [= Terminal
{'1' Terminal
(= Tracing
(= Hilinx
= XML

Cancel

It then adds terminal at bottom-right corner of IDE. We have to connect it with our board. We

also need to configure the terminal.

By clicking on open a terminal icon, it pops-up Launch Terminal dialog window.

~J Launch Terminal m]
Choose tesminal: | Serial Terminal
Settings
Port: -
BoudRate | 115200 -
DatsBits: |8 v
Parity: None v
Stop Bits: |1 ~
Flow Control: | None -
Timeout (sec): | 5
Encoding: | Default (150-8359-1) v
@ oK Cancel

Page 56 of 70

L logictronix

PYNQ Z1 Video Processing Subsystem Feature Implementation

Here, we have to choose terminal as Serial Terminal from dropdown options. We need to select

the port, where the board is connected. The port is only visible as long as board is connected to

the computer and it is powered ON. Then we need to choose baud rate. Based on the design,

we can choose one of the baud rates from the dropdown options. This project design uses

115200 baud rate.

After this, we let other parameters as they are already. Then, click on OK to complete terminal

connection.

Now, we can launch the application on board by following steps;

~L Explorer F3

(= ps7_cortexad 0
(= resources
& zynq_fsbl
«J platform.spr
v [5=] vpss_app_system [vp—-"
v {5} vpss_app [standal
¥ Binaries
) Includes
= Debug
~ [src
[Main_menu.

Emaine 3

[& menu_C5C.c
menu_FRC.c

[& menu_Repor fuy
[& menu_Scale, _,
%)

[€ menu_TPG.c
[B platform_co
[platform.c
[8l_nlatform.h

) Assistant 52

vpss [Platform] =]
v 52 wpss_app_system [5y= [

ﬁ} vpss_app [Applical

E

B %

New
Add Application Project...
Add Library Project...
Add Hw Kernel Project...
Paste

Delete

Refresh

Import Sources...
Export as Archive
Close System Project
Build Project

Clean Project

Create Boot Image
Program Flash
C/C++ Build Settings

Team

Run As
Debug As

Properties

-

Explorer > Application Project > Right Click > Run as > Launch Hardware

8 [8] Main_menu.c 52 | [€ menu_TPG.c

" 1 #include "vpss.h"

3= void MainMenu(app_periphs_t

Ctrl+V

P
URES0odnmeWn=Ewon-ams

H

xil_printf("\x18[H");

xil printf("\x1B[21");

XA 1_printf(4mm-n-mmon-
xil_printf("| PYNQ-ZI
Xil_printf("----------
xil_printf("| 1. video
xil_printf("| 2. Scalir
xil _printf("| 3. Coler
xil_printf("| 4. Frame
xil_printf("| 5. VPSS F
Xil_printf("h--nnmnmnos
xil_printf("| Enter Sel

= void mainMenuState(app_peri

char userInput;

switch (rEadUserInput(
case '1'

Tl

§ Console g2 |[¥] Problems [E| vitis Lc

F Debug Virtual Terminal - ARM Cortex-A

> #. 1Llaunch Hardware [
’ Run Configurations...

Figure 68. Launching software application on hardware

Vitis IDE first loads the bitstream to board.

 Progress Information

'6" Programming FPGA

50% 1MB 1.9MB/s 7277 ETA

Cancel

Figure 69. Loading bitstream

If it is successful, then launches application on board.

Details > >

Page 57 of 70

{7 logictronix

PYNQ Z1 Video Processing Subsystem Feature Implementation

If launching is successful, we might be able to see terminal messages as well as output on the

monitor as following;

-é. 3 Terminal 23
~ &) Serial COM4 (8/15/20, 5:35 PM) &2

| 1. video Test Pattern |
| 2. scaling |
| 3. Color Space Conversion (CSC) |
| 4. Frame Rate Conversion (FRC) |
| 5. VPS5 Report |

| Enter selection:|]

Figure 70. Main menu on the terminal

This is what main menu looks like on the terminal. It allows user to select one of these options.

Figure 71. Initial output

This is the output on the monitor, when the project design initially runs with default parameters,

such as,

e Input/output stream (Video Mode): 1920x1080p@60Hz
e Video Pattern : Color bars

e Color format : RGB

e Sampler per Clock: 1

e Frame rate: 60Hz

e Video format: progressive

e Output pixel frequency: 148.5 MHz

Page 58 of 70

ofo . .
- [logictronix
- PYNQ Z1 Video Processing Subsystem Feature Implementation

Each individual option related output is discussed below
Video Test Pattern

When user selects Test Pattern Selection option, then following menu is seen on the terminal.

-é- &8 Termina %]

<L B Serial COM4 (8/15/20, 5:35 PM) 52

5' e +
| VIDEQ TEST PATTERM |

[+

| Pattern Selection Status:
| Color Bars

| Enter Selection:|]

Figure 72. Test pattern selection terminal menu

The following sub-menu is seen when change test pattern option is selection.

-é. 4B Terminal 3@1
<. [Serial COM4 (8/15/20, 5:35 PM) 52

W

| 1. Horizontal Ramp |
| 2. Vertical RAMP

| 3. Temporal RAMP

| 4. Seolid Red

| 5. Solid Green

| 6. Solid Blue

| 7. Solid White

| 8. Selid Black |
| 9. Color Bars

| 18. Zone Plate

| 11. Tartan Color Bars |
| 12. Cross Hatch

| 13. Rainbow Color

| 14. HV Ramp

| 15. Checker Board

| 15. Bars

| 17. DP Coler Bars

| 18. DP B/W Vertical Line |
| 19. DP Coler Square |
| |
| |

'b' <-Back to Menu

| Enter Selection:

Figure 73. List of pattern

This menu has lists of various video test pattern. When option is selected, following output is

seen on the monitor.

Page 59 of 70

‘»Lf; logictronix

PYNQ Z1 Video Processing Subsystem Feature Implementation

=
-

Figure 74. Different TPG pattern selection output

Scaling

When user selects scaling option from main menu, then following submenu is seen

-é- A2 Terminal S@]
L |(ED Serial COMA (2/15/20, 5:35 PM) 52

el T "
= SCALING MODE |
o +
1. Change Input Resoclution
2

I
. Change Output Resclution |
|

| Scaling Status:

1928x1e88{6eHz - >SCALE - >1928x1888{@68Hz

| Enter Selectien:

Figure 75. Scale terminal menu
This messages also displays the current scaling status as highlighted by red box in above image.

From this message, user can select to change the resolution of input stream or output stream.

Page 60 of 70

-[I%. logictronix

o
I

L PYNQ Z1 Video Processing Subsystem Feature Implementation

And following lists of resolution are displayed. Resolution lists are same for input and output

stream.

5 J{'!rl'e'r'rnir'.eﬂ ESW
~L |[& Serial COMA4 (8/15/20, 5:35 PM) 32
e P s "
& | SCALING MODE
ol - +
| 1. 1928x1@86@68Hz
| 2. 1288x1824@66Hz
| 3. 1288x96@@EcEHZ
| 4. 1288x728@58Hz
| 5. seexcesfceHz
| 6. B48x486@68HZ
| |
| 'b' <-Back to Menu |
= e +
| Enter selection:|]

Figure 76. Resolution list

Followings are scaled outputs are obtained after setting the resolution.

& é@'&nﬂha!ﬁ@]

~L |[B Serial COM4 (8/15/20, 9:37 PM) 22

E o e +
| SCALING MODE |

B +
| 1. Change Input Resolution
| 2. Change Output Resolutien
| |
| 'b' <-Back to Menu |
L +
| Scaling Status:
1920x1888H68Hz - »SCALE - »800x608{@68Hz
b m e +
| Enter Selection:

Figure 77. Scaled output from 1080p to 600p

Image represents the output when input stream is at 1920x1080p and output is at 800x600p.

That is, scale down. In other words, 1080p color bar pattern is scaled to fit 600p resolution.

Page 61 of 70

o
I

-/l logictronix

- PYNQ Z1 Video Processing Subsystem Feature Implementation

-é. é?rkrmind 231
<L |2 Serial COMA4 (8/15/20, 9:37 PM) 52

B e e +
= | SCALING MODE |
[e +
1. Change Input Resolution
2

|
. Change Output Rescluticn
|

| Scaling Status:

64@xA3RI60Hz - >SCALE - »12808x7 20@68Hz

| Enter selection:|]

Figure 78. Scaled output from 480p to 720p

Above images depicts the output when both input stream is at 640x480p and output stream is

set to 1280x720p. That is scale up.

Color Space Converter

When user selects Color Space Converter (CSC) options from the main menu, the following CSC

menu is seen on the terminal.

51 4B Terminal E@]

<. B Serial COM4 (8/15/20, 5:35 PM) 52

el T
& | COLOR SPACE CONVERSION MODE
B
| 1. Change Input Coler Format
| 2. Change Output Color Format
|
| 'b" <-Back to Menu
e e

| Color Format Status:

RGE-->WP55 (5-->RGB

| Enter Selectien:

Figure 79. CSC selection terminal menu

There are also two option to select input stream and output stream color format. In meantime,

this menu also displays the current format status between input and output. This is highlighted

by red box in the following image.

Page 62 of 70

ofo . .
- logictronix
- PYNQ Z1 Video Processing Subsystem Feature Implementation

5. é?lTérminalsﬂw

<1 (B Serial COMA (8/15/20, 5:35 PM) 52

e T "
= | COLOR SPACE CONVERSION MODE |
B +
1. Change Input Coclor Format
2

|
. Change Output Color Format |
|
'b" <-Back to Menu |

| Color Format Status:

RGE-->VP55 C5-->RGE

| Enter Selection:

Figure 80. Current CSC status of VPSS

This time, both streams have same color format, i.e. RGB. This format can be changed by selecting

menu options.

When one of the options is selected, then following color format list menu is displayed. Color

format lists for both input and output stream are same.

-é. éF]Términal E@]
L |[& Serial COM4 (8/15/20, 5:35 PM) 32

e e e e +
g | COLOR SPACE CONVERSION MODE
o [+

| 1. RGE

| 2. yuv_42a

| 3. vuv_422

| 4. yuv_a44

|

|

'b' <-Back to Menu |

| Enter Selection:|

Figure 81. Terminal CSC List

When one of the color formats in chosen, then following outputs obtain.

5. A= Terminal 3@1
~L |(BD serial COM4 (8/15/20, 9:37 PM) 32

@

1. Change Input Color Format
2. Change Output Color Format

| Coler Format Status:

YUV_428-->VP55 C5-->RGE

| Enter Selection:|

Figure 82. Output obtained after converting YUV420 into RGB

Page 63 of 70

i

°
G{ikrﬂ

logictronix
PYNQ Z1 Video Processing Subsystem Feature Implementation

This is the output that is obtained when input stream with YUV420 color format is converted into

RGB color format at the output.

~L |[[E) Serial COM4 (8/15/20, %37 PM) &2

= = e oo +
| COLOR SPACE CONVERSION MODE |
ol | +
1. Change Input Coler Format
2

. 48 Terminal E@}

|
. Change Output Color Format |
|

| Color Format Status:

RGE-->VP55 C5-->YUV_428

| Enter Selection:

Figure 83. Output obtained after converting RGB to YUV420

This is the output that is obtained when input stream with RGB color format is converted into

YUV color format at the output.

é;i' Terminal EE}
) Serial COM4 (8/15/20, %:37 PM) &2

1. Change Input Color Format |
2. Change Output Color Format |
|

| Color Format Status:

RGE-->VP55 C5--»YUV_444

| Enter selection:|

Figure 84. Output obtained after converting RGB into YUV444

This is the output that is obtained when input stream with RGB color format is converted into

YUV444 color format at the output.

Page 64 of 70

{7 logictronix
- PYNQ Z1 Video Processing Subsystem Feature Implementation

Frame Rate Converter (FRC)

When FRC option is selected from the main menu, following terminal menu is displayed.

4" Search | 48 Terminal 2
= Serial COM4 (8/15/20, 12:30 PM) &2

| 1. Change Input Frame Rate |
| 2. Change Output Frame Rate |
| |
| |

| FRC Status:

6@Hz - ->VP55 FRC--»68Hz

| Enter Selection:
Figure 85. FRC Terminal Menu

The option 1 can be selected to change the input frame rate. On selecting option 1, it displays
lists frame rate for the currently selected input stream resolution.

4 Search | M@ Terminal 2
) Serial COM4 (8/15/20, 12:30 PM) 2

6a
1@a
12a

'b" <-Back to Menu

Enter Selection:

Figure 86. Frame Rate List

This is the frame rate list supported by currently selected input stream resolution, that is,
1920x1080. Besides this, there are also separate frame rate lists, supported by other resolutions
value. But for now, when one of the value is selected, this frame rate value is converted into
output frame rate i.e. 60Hz by VPSS. The output on the monitor does not change because, all the
rates are converted into 60Hz. Following are some result obtained on the terminal after changing

input frame rate.

Page 65 of 70

? rT 9

logictronix

PYNQ Z1 Video Processing Subsystem Feature Implementation

4 Search [@ Terminal EX]

&) Serial COMA4 (8/15/20, 12:30 PM) 5%

1. Change Input Frame Rate
2. Change Output Frame Rate

|
|
|
| 'b" <-Back to Menu
| FRC Status:

3@Hz-->VP55 FRC-->B@Hz

| Enter selection:l]

4 Search (@ Terminal EX]
) Serial COM4 (8/15/20, 1230 PM) 52

o o +
| FRAME RATE CONVERSION |
o o +
1. Change Input Frame Rate
2

| |
| 2. Change Output Frame Rate |
| |
| 'b' <-Back to Menu |
| FRC Status:

58Hz-->VP55 FRC-->68HZ

| Enter Selection:

4 Search [@ Terminal EE]

&) Serial COMA4 (8/15/20, 12:30 PM) 53

L T B e e +
| FRAME RATE CONVERSION |
LR TP +
1. Change Input Frame Rate
2.

|
Change OQutput Frame Rate |
|

| FRC Status:

18@Hz-->WP55 FRC-->6@8HZ

| Enter Selection:l

Figure 87. Terminal messages obtained after changing input frame rate at 30Hz, 50Hz & 100Hz respectively

VPSS Report

This is the last menu option of the main menu. It is used to get the VPSS related information. It

is mainly used for VPSS debugging.

When this option is selected, the following submenu options are displayed on the terminal.

4" Search | {8 Terminal 23]

= Serial COM4 (8/15/20, 1230 PM) 53

1. VP55 Input/Output Configuration
2. VP55 Core Information

3. VPSS Log

4, VP55 Mode Status

"b" <-Back to Menu

| Enter Selection:

Figure 88. VPSS report terminal menu

Any of the options can be selected. But each option gives distinct information about VPSS.

Page 66 of 70

- [logictronix

PYNQ Z1 Video Processing Subsystem Feature Implementation

4’ Search L{!‘ Terminal EX]

& Serial COMA (3/15/20, 12:30 PM) 52

—————— SUBSYSTEM INPUT/OUTPUT CONFIG ------

->INPUT
Color Format: RGE
Color Depth: 1a
Pixels Per Clock: 1
Mode: Progressive
Frame Rate: 1e@Hz
Resolution: 1928x1e3efleaHz
Pixel Clock: 297808 kHz
->0UTPUT
Color Format: YUV_444
Color Depth: 1@
Pixels Per Clock: 1
Mode: Progressive
Frame Rate: 68Hz
Resolution: 1928x1888{s8Hz
Pixel Clock: 14350@ kHz

Zoom Mode: OFF
Pip Mode: OFF

Data Flow Map: VidIn -> VDMA -> LBOX -»> CSC -»> VidOut

| Enter Selection:l]

Figure 89. VPSS /o stream configuration terminal messages

These messages are displayed when sub menu option 1 is selection. This option display input

output stream configuration of VPSS.

*#***%* Video Processing Subsystem Configuration **#%**
Topology: Full-Fledged

->Sub-Cores Included
: Horiz. Chroma Resampler
: Vert Chroma Resampler - Input
: Vert Chroma Resampler - Output
: H Scaler
iV Scaler
© VDMA
1 LetterBox
: Color Space Converter
: Deinterlacer
1 Reset (AXIS)
: Reset (AXI-MM)
1 AXIS Router

Pixels/Clk =1
Color Depth = 1@
Num Video Components =
Max Width Supported = 384@

Max Height Supported = 2168

e oo +
| 'b" <-Back to Menu
e +

| Enter Selection:

Figure 90. VPSS Core information terminal message

These messages are seen when option 2 is selected. This option displays the cores included for

the particular topology, such as, Full Fledged in VPSS.

Page 67 of 70

qj; logictronix

- PYNQ Z1 Video Processing Subsystem Feature Implementation

) Serial COMA4 (8/15/20, 12:30 PM) 52
Info: Full mode - Videoc Data Flow setup 0K
Info: Subsystem start
Info: Subsystem configuration is valid
Info: Full mode - Set scale 1:1 mode
Info: Full mode - Videc Routing Table setup OK
Info: Subsystem reset
Info: Full mode - Video Router setup OK
Info: Full mede - Videc Data Flow setup OK
Info: Subsystem start
Info: Subsystem configuration is valid
Info: Full mode - Set scale_1:1 mode
Info: Full mode - Videc Routing Table setup 0K
Info: Subsystem reset
Info: Full mode - Videoc Router setup OK
Info: Full mode - Video Data Flow setup OK
Info: Subsystem start
Info: Subsystem configuration is valid
Info: Full mode - Set scale_1:1 mode
Info: Full mode - Videc Routing Table setup OK
Info: Subsystem reset
Info: Full mode - Video Router setup OK
Info: Full mode - Videoc Data Flow setup 0K
Info: Subsystem start
Info: Subsystem configuration is valid
Info: Full mode - Set scale 1:1 mode
Info: Full mode - Videc Routing Table setup OK
Info: Subsystem reset
Info: Full mode - Video Router setup OK
Info: Full mede - Videc Data Flow setup OK
Info: Subsystem start

log end
e +
| 'b' <-Back to Menu
e +

| Enter Selection:

Figure 91. VPSS log

This is displayed when option 3 is selected. These are event log of VPSS.

| Scaling Status:

1928x10588@106Hz - »5CALE->1920x1686@68Hz

| Color Space Conwersion Status:

RGE-->VP55 C5--»YUV_444

| Frame Rate Status:

1@@Hz - -»VPS5 FRC-->»68Hz

| Enter Selection:|i
Figure 92. VPSS Status

This is displayed when option 4 is selected. This gives information about current scaling status,

color format status and frame rate status of VPSS.

Page 68 of

logictronix
PYNQ Z1 Video Processing Subsystem Feature Implementation

REFERENCES

[1] PYNQ, "PYNQ: PYTHON PRODUCTIVITY," Xilinx, [Online]. Available: http://www.pyng.io/.

[2] L. Swanland, "Python + Zynqg = PYNQ : Introducing Our Latest Collaboration!," Digilent,
[Online]. Available: https://blog.digilentinc.com/python-zynqg-pyng-introducing-our-
latest-collaboration/.

[3] Xilinx, "Video Processing Subsystem," [Online]. Available:
https://www.xilinx.com/products/intellectual-property/video-processing-subsystem.html.

[4] Xilinx, "Video Test Pattern Generator product guide,” xilinx, [Online]. Available:
https://www.xilinx.com/support/documentation/ip_documentation/v_tpg/v8_0/pg103-v-

tpg.pdf.

[5] Xilinx, "Video Processing Subsystem Product Guide," [Online]. Available:
https://www.xilinx.com/support/documentation/ip_documentation/v_proc_ss/v2_0/pg23
1-v-proc-ss.pdf.

[6] xilinx, "Axis subset converter product guide,” xilinx, [Online]. Available:
https://www.xilinx.com/support/documentation/ip_documentation/axis_infrastructure_ip
_suite/vl_1/pg085-axi4stream-infrastructure.pdf.

[7]1 Xilinx, "Clocking Wizard Product Guide," Xilinx, [Online]. Available:
https://www.xilinx.com/support/documentation/ip_documentation/clk_wiz/v6_0/pg065-
clk-wiz.pdf.

[8] xilinx, "video timing controller product guide,” xilinx, [Online]. Available:
https://www.xilinx.com/support/documentation/ip_documentation/v_tc/v6_2/pg016_v_tc
pdf.

Page 69 of 70

