

For any Queries: mail us at info@logictronix.com or visit www.logictronix.com

Reference Tutorial on

Video Processing Subsystem (VPSS)

Feature Implementation on

Digilent PYNQ-Z1

Vitis and VIVADO Design Suite-2020.1

August 13, 2020

mailto:info@logictronix.com
http://www.logictronix.com/

PYNQ Z1 Video Processing Subsystem Feature Implementation

 Page 1 of 70

CHAPTER 1: INTRODUCTION

OVERVIEW

This project design document is based on the implementation of Video Processing Subsystem

on Digilent PYNQ-Z1 board along Vivado Design Suite 2020.1. This project uses Xilinx Video Test

Pattern Generator IP as the AXI4 video source for Video Processing Subsystem IP. The resulting

video stream goes all the way through series of video processing IPs to board output HDMI

interface and to HDMI monitor. The following picture depicts the general project overview.

Figure 1. Project Overview Block Diagram

This document mainly focuses on the Scalar, Color Space Conversion (CSC) and Frame Rate

Conversion (FRC) features of Video Processing Subsystem. This document approaches along

following sections, namely, Board overview, Video Processing Subsystem IP Overview, Design

Flow and Final Output. Under design flow section, the hardware design and the software design

will be explained. Under final output section, all the features output will be documented.

Zynq Host

Processor

Test

Pattern

Generator

Video

Processing

Subsystem

HDMI

Interface

DDR3

Memory

HDMI

Connector

HDMI

Video

Out

Digilent PYNQ-Z1 Board

Zynq-7020 APSoC FPGA

AXI4 to

Video out

PYNQ Z1 Video Processing Subsystem Feature Implementation

 Page 2 of 70

BOARD OVERVIEW

Figure 2. Digilent Pynq-Z1 Board [Source: Digilent, Inc.]

PYNQ Z1 Video Processing Subsystem Feature Implementation

 Page 3 of 70

PYNQ is an open-source project which allow to use Python language and libraries on the FPGA

device. Designers can exploit the benefits of programmable logic and microprocessors to build

more capable and exciting electronic systems [1]. PYNQ allow to combine the productivity of

the Python programming language with the flexibility of the Xilinx Zynq architecture [2].

That is, Python + Zynq=Pynq.

Figure 3. PYNQ

From a hardware perspective, this board is a very powerful board, featuring a ZYNQ 7020 APSoC,

high-speed peripherals, 512MB DDR3 Memory, HDMI sink port, HDMI source port as well as

Pmod and Arduino expansion possibilities.

PYNQ can be used with Zynq, Zynq UltraScale+, Zynq RFSoC, Alveo accelerator boards and AWS-

F1 to create high performance applications with:

• high frame-rate video processing

• hardware accelerated algorithms

• real-time signal processing

• low latency control

PYNQ Z1 Video Processing Subsystem Feature Implementation

 Page 4 of 70

VIDEO PROCESSING SUBSYSTEM IP OVERVIEW

According to Xilinx, the Video Processing Subsystem is one of Xilinx LogiCORE IP, made from

Vivado HLS, is a collection of video processing IP subcores, bundled together in hardware and

software, abstracting the video processing pipe. It provides the end-user with an out of the box

ready to use video processing core, without having to learn about the underlying complexities.

The Video Processing Subsystem enables streamlined integration of various processing blocks

including scaling, deinterlacing, color space conversion and correction, Chroma resampling, and

frame rate conversion [3].

Figure 40. Full-Fledged Video Processing Subsystem

Key Features

• One, two, four, and eight pixel-wide AXI4-Stream video interface

• Video resolution support up to 8k at 30 fps

• Run-time color space support for RGB, YUV 4:4:4, YUV 4:2:2, YUV 4:2:0

• 8, 10, 12, and 16 bits per component support

• Deinterlacing: supports 32-bit and 64-bit memory address

• Scaling

• Color space conversion and correction

• Chroma resampling between YUV 4:4:4, YUV 4:2:2, YUV 4:2:0

• Frame rate conversion using dropped/ repeated frames.

PYNQ Z1 Video Processing Subsystem Feature Implementation

 Page 5 of 70

CHAPTER 2: HARDWARE & SOFTWARE DESIGN

This project design is created with Vivado Design Suite, System Edition 2020.1. The Vivado IP

Integrator is used to create the hardware block. It contains Zynq Processing System. So, the

project design requires software application to work.

Under this section, this document will go through hardware and software part of design.

HARDWARE DESIGN

The hardware block is designed using Xilinx as well as Digitlentic IPs. Most of the Xilinx IPs are

already available in the Vivado IP catalog while installing Vivado. If it is required to use the IPs,

which are not available in the Vivado IP catalog, then we have to add them by Add Repository

options.

This hardware design is segmented into two sections; Hardware design flow and hardware IP

block design.

A. DESIGN FLOW

Every hardware design starts with creating new project. Vivado has two ways of working with the

IDE. It provides Graphical User Interface (GUI) and Command line Tool (TCL Console). User

can use either of them.

This section will go through all the steps involved while creating new project in Vivado by GUI

method as well as TCL Console method.

PYNQ Z1 Video Processing Subsystem Feature Implementation

 Page 6 of 70

GUI Method of creating New Vivado Project

1. In the main page of Vivado IDE, new project can be created by clicking on Create Project.

This will pop-up Create a New Vivado Project dialog window.

Figure 5. Vivado Welcome Page

2. This pops-up dialog window that gives short information about creating new Vivado

project. We can skip this by click on Next.

Figure 6. Project Create Dialog Box

After clicking next, we go through a series of dialog windows to set project name and its

location directory and then adding block design, constraints files and finally part or board

selection.

PYNQ Z1 Video Processing Subsystem Feature Implementation

 Page 7 of 70

3. Under this Project Name dialog window, we have to give Project Name and Project

Location for our new project. We can Browse the directory to locate our project. After that,

we proceed ahead by clicking on Next.

Note: There should not be any spaces or special characters (except ‘_’ & ‘-‘) in the project

name and the directory. We must also check the project name length and directory path

length. Because, windows OS only support 255 characters.

Figure 7. Project Name & location setting dialog window

4. Under this window, we have to specify Project Type to be created. There are five options to

specify the type of our project.

Figure 8. Project Type selection window

PYNQ Z1 Video Processing Subsystem Feature Implementation

 Page 8 of 70

Based on the requirements of the project design, we can select any of these types. In our

project design scenario, we go selecting RTL Project type. Because, this type of project allows

us to add sources, block design in the IP integrator, simulate the design, run RTL analysis,

synthesis, implementation, design planning and analysis, generate bit stream. After this, click

Next to go another project dialog window.

5. Under this window, we Add Sources, such as, HDL, netlist, Block Design, IP files. If we want

to add such sources, we can click Add Files button or Plus icon. We can also create such files

ourselves by clicking on Create File button. We can click on Add Directories to add source

location.

Besides this, we can specify Target language and Simulator language. By default, these

languages are selected to Verilog and Mixed respectively. After that we proceed to Next.

NOTE: we can also skip this add source window. Because, Vivado also allows us to add such

sources and files after creating the project.

Figure 9. Add source dialog window

PYNQ Z1 Video Processing Subsystem Feature Implementation

 Page 9 of 70

6. Under this window, we specify or create constraint files for physical and timing constraints.

Figure 10. Add constraints dialog window

To add constraint to our new project, we click on Add Files. It allows to locate the constraint

file.

Figure 11. Copy constraints files into project

After adding constraint, we must have to Tick on Copy constraints files into project.

Otherwise, when we do constraint changes in our project, it will also cause to change the

constraint to the original file or other project’s constraint from where we added this.

To create constraint file, we can create it ourselves for which we click on Create File. It will

create constraint file (.XDC file) for our new project.

After this, we click on Next.

NOTE: We can also skip this window. Because, Vivado also allows us to add or create

constraint files later after creating the project.

PYNQ Z1 Video Processing Subsystem Feature Implementation

 Page 10 of 70

7. Under this window, we have to choose Board or Part to implement our project.

Figure 12. Project part or project board selection window

In this window, there are two tabs, i.e. Parts and Boards. We can go to parts tab to select

board part or we can go to boards tab to select board. Under both tabs, we see Xilinx’s part

and board lists respectively. These are only visible as long as these are installed. We can also

Search board or part to select. To install or update any board definition, we can go to

Install/Update Boards on top right of this window.

In our project design, we select PYNQ-Z1 board, after which we proceed Next.

8. Under this window, we see New Project Summary.

Figure 13. Project summary dialog window

PYNQ Z1 Video Processing Subsystem Feature Implementation

 Page 11 of 70

It gives the information about project name, selection of source file, constraint file and finally

information of selected part or board.

9. Now, we click on Finish to create new Vivado project based on the above steps parameters.

10. When new project create is successful, it opens into Vivado IDE as shown below.

Figure 14. Vivado IDE after creating new window

TCL Console Command Method of creating New Vivado Project

We can also create new project by using TCL command, which is faster than GUI method. In this

method, we use following command to create the project.

1. To create the project with part selection, we use create_project and –part command as

following;

create_project <project_name> <project_directory/project_name> -part <part>

Here, we give project name in <project_name> field,

We give project directory with project name in <project_directory/project_name> field

And finally we have to specify part designation in <part> field.

PYNQ Z1 Video Processing Subsystem Feature Implementation

 Page 12 of 70

In this project design scenario, we are intending to use PYNQ-Z1 board. So, in order to create

project, the TCL command becomes

create_project pynq_z1_vprocss D:/LogicTronix/ pynq_z1_vprocss -part xc7z020clg400-1

Now, we have to enter this command in TCL console as following.

Figure 15. Vivado welcome page with TCL Console

2. After entering the command, Vivado quickly creates new project and opens Vivado IDE

PYNQ Z1 Video Processing Subsystem Feature Implementation

 Page 13 of 70

3. The Vivado creates the project with Project Part. If we want to add the board definition to

current project, then we have to simply enter the following TCL command.

set_property board_part <board_definition> [current_project]

Here, we have to specify the board definition of project part.

In this project design, PYNQ-Z1 board is used. So, we specify this board definition as

following;

set_property board_part www.digilentinc.com:pynq-z1:part0:1.0 [current_project]

4. After entering the TCL command, now the project part is changed to board.

Figure 16. Vivado IDE window after changing project part

In this way, by using TCL command, Vivado creates new project quickly within a few steps.

Now after creating the project, we need to add diagram canvas to create IP blocks. For this, we

have to follow the steps;

Flow Navigator > IP Integrator > Create Block Design

This pops-up a window, where we set the block design name. And click on OK.

PYNQ Z1 Video Processing Subsystem Feature Implementation

 Page 14 of 70

Figure 17. Block Design name pop-up window

We can also enter following TCL command to create the block design instead of GUI method.

create_bd_design "design_1"

Now this opens diagram canvas

Figure 18. Vivado IDE after creating block design

Before starting to create hardware block design, we have to check IP Repositories. This is only

required when we need to add IPs that are not available in Vivado IP catalog. That means,

Vivado has already some of Licensed Xilinx IPs. And if our block design has IPs which are not

found in the Vivado IP catalog, then we need to add those missing.

In this project design, we have to interface with HDMI. So that, we have to add Digilent

RGB2DVI IP to Vivado IP repository.

PYNQ Z1 Video Processing Subsystem Feature Implementation

 Page 15 of 70

Repositories can be added by following steps;

Flow Navigator Project Manager Setting

This opens Setting dialog.

Project Setting IP Repository

Click on to go to locate IP repository directory. Then click on OK to finish adding IP

repositories.

Figure 19. Add IP Repositories dialog window

Besides this, we can also enter TCL command to add IP repositories. For this, we use following

command.

set_property ip_repo_paths <ip_repo_directory> [current_project]

Here, we have to locate the IP repositories directory in <ip_repo_directory> field.

Now, we are all set. We can proceed to hardware IP block design.

PYNQ Z1 Video Processing Subsystem Feature Implementation

 Page 16 of 70

B. IP BLOCK DESIGN

In this section, we create IP blocks by adding the required IPs from the IP catalog.

Figure 20. Adding IP to IP Integrator

To begin adding IPs, we can click on any icon within diagram canvas or we can also use shortcut

key Ctrl+I. This will pop-up the IP selection window. Here, we can scroll down or use search box

to find necessary IPs.

In this project design, we have following major IPs. They are;

• Zynq Processing System,

• Video Processing Subsystem (VPSS),

• Test Pattern Generator (TPG),

• Video Timing Controller (VTC),

• Clocking Wizard,

• AXI4-Stream Subset Converter,

• AXI4-Stream-to-Video Out and

• RGB2DVI.

PYNQ Z1 Video Processing Subsystem Feature Implementation

 Page 17 of 70

We add and connect these IPs one after another. We also do run block automation and run

connection automation so that Vivado IP integrator automatically does necessary IP connections,

preset configurations and addition of interconnect IPs and so on.

All the IPs and their customizations and connections are described as following;

1. Zynq Processing System

The processing system (PS) in Zynq-7000 is dual-core ARM cortex A9 processor or CPU placed

in the same FPGA chip along with the programmable logic (PL). This is the central processing

system of the project. It provides the configuration and control of all IP drivers and hence the

video processing. The DDR of processing system (PS DDR) is used as frame buffer. This frame

buffer is used by video processing subsystem IP to achieve various features.

Figure 21. Zynq Processing System

In case of current project design, High Performance (HP0) Slave Interface is enabled, which

provides DDR memory access to video processing subsystem IP. General Purpose (GP0) Master

interface is enabled, which is used to configure and control the video processing IP chain by data

read and data write process.

FCLK_CLK0 is enabled in the PS. This clock is set to generate 148.5 MHz. The clock pin of all the

video processing IPs are connected to this clock source.

PYNQ Z1 Video Processing Subsystem Feature Implementation

 Page 18 of 70

2. Test Pattern Generator (TPG) v8.0

Figure 22. Video Test Pattern Generator

TPG is used as the video source for this design. This IP generates the different video test pattern

data. The control bus is used to program the IP from SDK. The specific pattern selection is also

done through programming. However, to generate specific type of pattern, user has to enable

all the pattern type in the hardware design.

Figure 23. TPG pattern enable

The video stream is then fed to video processing subsystem IP.

More information about this IP can be found on its product guide PG103. [4]

PYNQ Z1 Video Processing Subsystem Feature Implementation

 Page 19 of 70

3. Video Processing Subsystem (VPSS) v2.1

Figure 24. Full-Fledged Video Processing Subsystem

VPSS enables streamlined integration of various processing blocks including scaling,

deinterlacing, color space conversion and correction, Chroma resampling, and frame rate

conversion.

Figure 25. VPSS Customization

Under customization, VPSS IP can be operated in one of the following modes, such as, full-

fledged mode, scalar mode, deinterlacing mode, color space conversion mode and Chroma Re-

sampler mode. But this project design uses full-fledged mode. By this mode, all other mode

PYNQ Z1 Video Processing Subsystem Feature Implementation

 Page 20 of 70

functionalities can be obtained. And in this mode, AXI-memory mapped interfaced is added to

IP so that IP can be connected to DDR memory for frame processing.

This IP also has control bus for its configuration from SDK. We can do coding to generate

different functional outputs.

This IP receives video stream from TPG and then generates output. This output is fed to

following video processing IPs.

Figure 26. VPSS Input Output Connection

Video Processing Subsystem IP has aresent_io_axis[0:0] output reset pin. This is only visible

when this IP is customized to full-fledged mode. This reset pin is used to control the reset line of

upstream and downstream IPs. That means, until VPSS IP gets ready to work, its reset pin is used

to set the upstream and downstream IPs in reset mode. So that, these IPs will not send or receive

the stream. In this project design, the reset pin of VPSS IP is connected to input reset pin of TPG

and AXI4S Subset Converter IPs.

Figure 27. VPSS reset line control

Video Processing Subsystem has multitude of features. For more technical details, user can visit

Video Processing Subsystem Product Guide [5].

4. AXI4-Stream Subset Converter

PYNQ Z1 Video Processing Subsystem Feature Implementation

 Page 21 of 70

This IP is mainly used for proper AXI4-Stream width conversion. If stream width has to be

converted such as 24 bit to 16 bit or vice versa, this IP can be used. Otherwise, this IP can be

omitted. For more details, we visti its product guide PG085. [6]

In our project design, this IP is used for 24 bit conversion for RGB Stream.

5. Clocking Wizard v6.0

Clocking Wizard is a clock generator IP. It helps creating the clocking circuit for the required

output clock frequency, phase, and duty cycle using a mixed-mode clock manager (MMCM)

(E2/E3/E4) or phase-locked loop (PLL) (E2/E3/E4) primitive. This IP accepts up to two input clocks

and generates up to seven output clocks per clock network.

Figure 28. Clocking Wizard IP

In this project design, clocking wizard IP receives one input clock and generates one output clock.

The generated output clock forms the pixel clock for VTC IP, AXI4-Stream-to-Video Out IP and

RGB2DVI IP. This IP can be customized either in static mode or dynamic mode. In static mode,

the IP generates the fixed output clock as defined by user. On the other hand, if IP is in dynamic

mode, any required output clock can be generated as per programming. For this, AXI-Lite

interface is added to IP. Under the customization window, we can enable dynamic

reconfiguration mode.

PYNQ Z1 Video Processing Subsystem Feature Implementation

 Page 22 of 70

Figure 29. Clocking Wizard Customization

In this project design, clocking wizard is enabled with dynamic reconfiguration. This is because

of the fact that when we need to vary the output resolution, we must require corresponding

resolution pixel clock. Therefore, whenever video processing subsystem performs scaling to

different resolution, the clocking wizard is programmed to generate the pixel clock, which is

corresponding to scaled resolution.

Figure 30. Clocking Wizard Output Clock

Clocking

wizard

Video

Timing

Controller

AXI4S

-to-

Video

Out

RGB

-to-

DVI

ACLK

Pixel Clock

PYNQ Z1 Video Processing Subsystem Feature Implementation

 Page 23 of 70

Figure 31. Clocking wizard output clock connection

Detailed information can be gained from Clocking Wizard Product Guide[7].

6. Video Timing Controller (VTC)

The Video Timing Controller IP core is a general purpose video timing generator and detector.

The core is highly programmable through a comprehensive register set allowing control of

various timing generation parameters. This programmability is coupled with a comprehensive set

of interrupt bits which provides easy integration into a processor system for in-system control of

the block in real-time. The Video Timing Controller is provided with an optional AXI4-Lite

interface.

Figure 32. Video Timing Controller (VTC) IP

PYNQ Z1 Video Processing Subsystem Feature Implementation

 Page 24 of 70

Unlike the programmability, VTC can be configured as static for static video modes. In other

words, if video processing block is designed for only a particular video resolution, VTC IP can be

customized to support that video resolution only.

Figure 33. VTC IP Customization

In this project design, the VTC is used to generate the video timing. AXI4-Lite Interface is also

enabled. By doing this, VTC IP can be programmed to generate different video timing signals in

real-time. Based on the output video resolution set in the video processing subsystem, the VTC

IP generates corresponding timing signals.

For more details, we can visit product guide PG016 [8].

7. AXI4-Stream-to-Video Out

The AXI4-Stream to Video Out IP core is designed to interface from the AXI4-Stream interface

implementing a Video Protocol to a video source, such as, parallel video data, video syncs, and

blanks. This core works with the Video Timing Controller IP. This core provides a bridge between

video processing cores with AXI4-Stream interfaces and a video output.

PYNQ Z1 Video Processing Subsystem Feature Implementation

 Page 25 of 70

Figure 34. AXI4-Stream to Video Out IP

In the project design, this core generates 24 bit parallel RGB video data. Its clock mode is set to

independent mode. So that, we can give separate clocks for AXI4-Stream interface and output

video stream.

This IP has video timing generator control enable (vtg_ce) output pin, which is connected to

gen_clken input pin of VTC IP. By this, axis4stream to video out IP is able to enable or disable

the video timing generation for the purpose of synchronization between video stream and its

timing.

Figure 35. AXI4Stream-to-video out ip controlling video timing generator

AXI4-Stream to video out IP has three signal status output pins. They are; locked, overflow and

underflow. These signals are dependent to synchronization between video stream and its video

timing. When stream and timing are perfectly synchronized, then locked signal is set to high,

which means IP is ready to generate video output. Then finally, generates native video stream

that has 24 bit parallel video data, video active signal, and hsync and vsync signals.

PYNQ Z1 Video Processing Subsystem Feature Implementation

 Page 26 of 70

8. RGB-to-DVI

Figure 36. RGB-to-DVI Encoder IP

In order to display video stream on output monitor, we have to use this IP. This is because, PYNQ-

Z1 only has HDMI to display the video. So that, we need to access pynq HDMI interface. RGB-to-

DVI IP is made by Digilent that facilitates to access HDMI interface. This IP interfaces directly to

raw transition-minimized differential signaling (TMDS) clock and data channel outputs as defined

in DVI 1.0 specs for Source devices. It encodes 24 bit parallel video data from AXI4-Stream-to-

Video-out IP along with pixel clock and synchronization signals. It supports resolution from

1920x1080p@60Hz to 800x600p@60Hz with pixel frequency 148.5MHz-40MHz respectively. For

more information, we can visit www.digilentic.com.

Figure 37. TMDS connected to hdmi_tx port

In this project design, this IP output pin, i.e. TMDS is connect to hdmi_tx port.

http://www.digilentic.com/

PYNQ Z1 Video Processing Subsystem Feature Implementation

 Page 27 of 70

After adding and connecting all the necessary IPs, we finally complete the final IP block design.

We also do Regenerate Layout to display our block design in organized manner.

Figure 38. Regenerate Layout icon click

Finally, our project IP block design looks like as following;

Figure 39. Final IP blocks

PYNQ Z1 Video Processing Subsystem Feature Implementation

 Page 28 of 70

Figure 40. Final Block Design

PYNQ Z1 Video Processing Subsystem Feature Implementation

 Page 29 of 70

Now, we have to Validate Design to find out possible errors and warnings in the early stage.

Figure 41. Validation Design

If there are no errors and no warnings, the validation will be successful. Otherwise, we have to

check all the hardware connections, clock connections, data width and IP customizations to

remove the errors and the warnings.

If validation check completes, we have to create HDL wrapper to create top HDL module.

Design Sources > design_1 > Right Click > Create HDL Wrapper

Figure 42. Creating HDL Wrapper

Then, we let Vivado manage wrapper and auto-update. Then click on OK. By doing this, the

Vivado will automatically update top module, if IP block design is changed or modified.

Figure 43. Let Vivado manage wrapper and auto-update

PYNQ Z1 Video Processing Subsystem Feature Implementation

 Page 30 of 70

Now, we have to add the constraint file that will be used for physical ports mapping with IP

block ports. For this, we follow,

Constraints > Right Click > Add Sources

Figure 44. Add constraint file

This will pop-up Add Source dialog window, where we have to select Add or create constraints.

And then Next.

Figure 45. Add constraint dialog window

This now opens Add or Create Constraints dialog window. Here we can either locate the

constraint file (XDC file) or create our own constraints. After doing this, we click on Finish to

complete the addition of constraint in our project design.

PYNQ Z1 Video Processing Subsystem Feature Implementation

 Page 31 of 70

Figure 46. Add or Create constraint dialog window

After this, we have to check constraints. There should be no error mapping between physical port

and block design port. Otherwise, bitstream generation will be failed.

After making everything well, we can now generate bitstream. We can directly follow

Flow Navigator > Program and Debug > Generate Bitstream

Figure 47. Starting Generation of bitstream

PYNQ Z1 Video Processing Subsystem Feature Implementation

 Page 32 of 70

After that, we should hit Yes if it pops-up the messages saying synthesis or implementation result

not available. In other words, if there is no synthesis or implementation result, the Vivado will

automatically generates them one-after-another before generating bitstream.

We can use TCL command to instantiate the bitstream generation.

launch_runs impl_1 -to_step write_bitstream -jobs 2

If everything goes well, bitstream generation is started. And we have to wait until it is completed.

If bitstream generation is completed, we can now proceed to SDK part. For this, we first have to

export the hardware specification file. Since we use Vitis 2020.1 software tool, it has different

approach to export hardware file.

First, we follow this step for export.

File > Export > Export Hardware

Figure 48. Exporting hardware specification

This pops-up Export Hardware Platform dialog window as following. Here is some brief about

hardware export.

PYNQ Z1 Video Processing Subsystem Feature Implementation

 Page 33 of 70

Figure 49. Platform type selection window

Under Platform type, we have to select the Fixed type because, we are developing Embedded

Software. Then we click on Next.

Now, Output dialog window opens, where have to select Include bitstream output option.

Because, our software application requires hardware specification.

Figure 50. Output type selection window

Then click on Next. This opens another window as shown in image below.

PYNQ Z1 Video Processing Subsystem Feature Implementation

 Page 34 of 70

Figure 51. XSA File selection window

The hardware specification is exported as XSA file. So that, under this window, we have to enter

the valid xsa file name and the valid directory. In this directory, our xsa file will be exported. To

locate the directory, we can Browse the location. And after this, we click on Next.

After this, information dialog window is opened, where we click on Finish to complete the

hardware export.

If everything goes well, the hardware export is successful. So, we can now proceed to software

design section.

PYNQ Z1 Video Processing Subsystem Feature Implementation

 Page 35 of 70

SOFTWARE DESIGN

For the software design, we use Vitis Unified Software Development Platform 2020.1. As for

introduction, the Vitis unified software platform is a new tool that combines all aspects

of Xilinx software development into one unified environment.

It enables the development of embedded software as well as accelerated applications on

heterogeneous Xilinx platforms including FPGAs, SoCs, and ACAPs. For more details, we can visit

www.xilinx.com.

 This section divulges software design flow and software application coding as following.

A. DESIGN FLOW

In this sub-section, we go through all the steps involved while creating software platform and

application projects.

1. After the exporting the hardware specification, we launch the Vitis IDE from Vivado IDE by

following steps;

Tools > Launch Vitis IDE

Figure 52. Launching Vitis 2020.1

This launches the Vitis IDE onward.

2. During this launching, the Vitis pops-up a dialog window as shown below to select directory

for workspace. Because, Vitis uses this directory to store the development artifacts.

http://www.xilinx.com/

PYNQ Z1 Video Processing Subsystem Feature Implementation

 Page 36 of 70

Figure 53. Workspace directory selection

We have to set the directory in the workspace directory field. We can also click dropdown to

see previously used directories. We can select one of these for workspace. However, we can

also Browse to locate our desired workspace directory.

Then we click on Launch to start the Vitis IDE completely.

3. Now, the Vitis IDE opens its welcome page at the beginning.

Figure 54. Vitis welcome page

4. Welcome page has various selection options, out of which we first go through Create

Platform Project. This opens Create new platform project dialog window.

PYNQ Z1 Video Processing Subsystem Feature Implementation

 Page 37 of 70

Figure 55. Create new platform project window

Here, we specify Project name and it location. By default Vitis uses default location to store

platform project. While giving the project name, there should be no space and special

characters [except “_” and ”-“] in the name. We must also check the project name length

and directory path length. Because, windows OS only supports 255 characters.

Then, click on Next.

5. Now, another dialog window is opened to create platform project from hardware

specification or to create platform project from existing platform.

PYNQ Z1 Video Processing Subsystem Feature Implementation

 Page 38 of 70

We select first option. Because, we create new platform project from our exported hardware

specification.

Then go to Next.

6. This opens another window, where we have to locate our exported hardware specification or

XSA file.

Figure 56. Locating exported hardware specification (XSA file)

Here, we have to browse to locate our XSA file. By doing this, the software specification is

automatically selected.

Then we go to Finish.

7. Now, the platform project is successfully created. And Vitis IDE is opened.

8. Initially, the platform project is out-of-date. So, we must build before creating application

project. Project build is done by

Explore > Right click on platform project > Build Project

PYNQ Z1 Video Processing Subsystem Feature Implementation

 Page 39 of 70

Figure 57. Platform project build

There should be no error while building product. Otherwise, we have to check our hardware

specification.

9. After building platform project, we create application project by following;

File > New > Application Project

Figure 58. New applicatio project creation

PYNQ Z1 Video Processing Subsystem Feature Implementation

 Page 40 of 70

10. Now, a dialog window is opened.

Figure 59. Platform selection window

Here, we select platform project that was initially created. Under this window, we can also

create platform project here, if we initially create application project.

Then we click on Next.

11. After this, another window is popped-up, where we set our application project name.

Figure 60. Setting project name

Here, we give the application project in such a way that it should contain any space or special

characters except ‘_’ & ‘-‘.

Then we proceed Next.

PYNQ Z1 Video Processing Subsystem Feature Implementation

 Page 41 of 70

12. Now, Domain dialog window is opened. We do not do anything here. Because, domain is

already specified by default. Therefore, we can directly proceed Next.

13. This time, Template dialog window is opened.

Figure 61. Application template selection

Here, we select one of the available templates. Since we are developing standalone

embedded application, we choose either Empty Application or Hello World software

template.

Here is the note that we can select any available software application templates between

these templates. Only the difference, in empty application, user has to add everything, such

as, platform codes for the project whereas hello world project has everything for starting new

project. It is likely a ready to use project. User can write or import the programs directly. And

if project build is successful, user can quickly launch the application.

Then we click on Finish to complete the application project creation.

PYNQ Z1 Video Processing Subsystem Feature Implementation

 Page 42 of 70

Figure 62. Vitis IDE.

This is what Vitis IDE looks like after we create platform project and application project.

Now, we can proceed to write our software application code. This is included in software

application design section.

B. SOFTWARE APPLICATION DESIGN

After successful application project creation, we can write either our own code or import other

codes. In this project design, we write code ourselves. To code ourselves, we have to create c-

programming file (.c file). We create this file by following steps;

Explorer > Application Project > src > Right Click > New > File

PYNQ Z1 Video Processing Subsystem Feature Implementation

 Page 43 of 70

Figure 63. Adding new file to project

This will pop-up New File dialog window, where we give programming File Name.

Figure 64. Setting file name with extension

Here, we give file name with extension .c, i.e. main.c. Then we click Finish.

Now, this creates main.c programming under src. We can also create header file by following

same procedure. But only we have to do is to set extension .h. We can create as many files as

required.

PYNQ Z1 Video Processing Subsystem Feature Implementation

 Page 44 of 70

Figure 65. Software Application Architecture

The above diagram represents three level software application architecture. At the top level, i.e.

layer 3, the main function resides, from where software application starts. The main function

becomes entry point. It has instances for peripheral and main menu display, which then calls

layer 2 functions. In layer 2, all the peripherals initialization instances are loaded, which then calls

layer 1 to initialize each and every peripherals and finally configures these peripherals, which

Main function

Peripherals Main menu

TP
G

 c
o

n
fi

gu
ra

ti
o

n

V
P

SS

C
o

n
fi

gu
ra

ti
o

n

C
lo

ck
in

g
w

iz
ar

d

co
n

fi
gu

ra
ti

o
n

TP
G

 M
en

u

Sc
al

in
g

M
en

u

C
SC

 M
en

u

FR
C

 M
en

u

R
e

ad
 U

se
r

In
p

u
t

V
TC

 c
o

n
fi

gu
ra

ti
o

n

X
V

_t
p

g

xv
tc

xv
p

ro
cs

s

xc
lk

_w
iz

xuartps

L
a
y
e
r

1

L
a
y
e
r

2

L
a
y
e
r

3

Software Application

Xilinx Hardware

X
il

in
x
 D

ri
v
e
r

PYNQ Z1 Video Processing Subsystem Feature Implementation

 Page 45 of 70

then configures Xilinx hardware through drivers. So that, application starts working. In meantime,

layer 2 main menu function displays main menu on the terminal and background process runs

to read the user input and to display corresponding sub menus. When user gives input, such as,

TPG pattern selection, resolution selection, and color format selection and so on, the

corresponding peripheral is configured and finally hardware is updated to give output. And

corresponding menu is also displayed on the terminal and again background process runs to

take other user input.

The details of all the functions of this software design are mentioned below.

The above code snippet is taken from main function. Upon execution, this function calls following

functions;

1. init_periphs(&app_periphs)

2. init_application(&app_periphs)

3. MainMenu(&app_periphs) and mainMenuState(&app_periphs)

Where, app_periphs is the structure variable that is declared as following;

app_periphs_t is the structure that is declared in header file. The following code snippet shows

structure declaration.

The structure is so declared because, it keeps all the different peripherals in a single entity, which

then helps to manage video processing pipe and its stream parameters.

PYNQ Z1 Video Processing Subsystem Feature Implementation

 Page 46 of 70

1. init_periphs(&app_periphs) function is used to initialize all the peripheral devices.

This includes initialization of test pattern generator (TPG), video timing controller (VTC) and video

processing subsystem (VPSS) IPs.

The following code snippet represents the initialization of peripheral devices.

XVprocSs_LogReset() function resets the VPSS log. So that, when VPSS starts working, all its

related log information are stored in the log file.

2. On the other hand, main function invokes init_application(&app_periphs) function

after successful initialization of peripherals to configure them first and then they are started. So

that, the application starts working.

PYNQ Z1 Video Processing Subsystem Feature Implementation

 Page 47 of 70

The above lines of code are written to set the input and output stream parameters, such as, video

mode/video resolution, its timing, color format, color depth value, pixel clock, frame rate and

video format. These parameters are stored in the structure pointer variable periphs_ptr so that

it can later be used to configure the input/output stream of video processing subsystem IP.

The above lines of code are written for TPG configuration parameters. This is also stored in

structure pointer variable periphs_ptr, which is later used for the configuration of TPG IP

parameters.

The above line of code is written for the configuration of clocking wizard. As it is already

discussed in hardware section, this IP is used to generate output video timing signal according

to output video mode selection. This function sets clocking wizard’s output clock, based on the

clock frequency value stored in the videoTiming[] array variable. Its timing value is strictly

PYNQ Z1 Video Processing Subsystem Feature Implementation

 Page 48 of 70

according to videoModes[] variable. videoMode array variable has definite arrays of video

resolution and corresponding to it, videoTiming arrays variable has array of pixel clock frequency

value.

Through these lines of code, the VPSS IP is configured based on the topology or functionality

mode selected in the hardware. It uses input and out stream parameters to configure this IP’s

input and output stream and finally if configuration is successful, the VPSS starts working.

These above lines of code are written to configure the TPG IP parameters, such as, height, width,

color format, overlayId, background pattern, video format etc…These all parameters are retrieved

from &periphs_ptr->tpg_config.

After this, TPG is started. Following code snippet is taken from configure_tpg() function.

Now, this time video timing controller (VTC) has to be configured. Because, VTC must generate

the video timing signal based on the output stream video mode.

PYNQ Z1 Video Processing Subsystem Feature Implementation

 Page 49 of 70

Above line of code is written so that VTC generates video timing signal according to video mode

retrieved from &periphs_ptr->video_pipe_config.Stream_out pointer variable. After setting

timing parameters, the VTC starts generating timing.

When we go inside configure_vtc_gen() function, we get following codes for VTC timing

parameter configuration.

Up to here, the project starts working initially with default stream parameters as discussed before.

Now, for the user action, input/output messages are printed on the terminal. Through this, user

will be able to monitor and enter the input to select various VPSS feature as output. These all are

discussed below.

3. MainMenu(&app_periphs) and mainMenuState(&app_periphs)

These functions are used to display menu on the terminal. Main menu function displays main

menus and menu state function reads user input value and executes configuration functions to

update the video processing pipe parameters thereby changes the output. Menu state function

also loads other submenus and status messages to give information about current hardware

PYNQ Z1 Video Processing Subsystem Feature Implementation

 Page 50 of 70

configuration. All menus and their menu states are executed within infinite loop statement.

Therefore, the messages and configuration are carried over and over again as per user input.

All the menu display is discussed in the output section. But for now, terminal message consists

of following options

 TPG Pattern Selection

It allows user to select different available TPG patterns. But it should be noted that the patterns

availability is only possible as long as different background pattern types are selected in the TPG

IP hardware block.

When user select this option, sub menu function is executed, which displays various pattern list

menu and corresponding menu state function waits infinitely until the user enters any input. If

user selects BACK2MENU option, TPG menu & its state are terminated. Otherwise, menu state

function takes that input according which background pattern ID is loaded upon TPG by invoking

configure_TPG() menu. And hence user selected TPG pattern is displayed.

Following shows TPG pattern selection code snippet.

Scaling

This option allows user to explore VPSS scaling feature. It allows user to scale up or scale

down the video by setting input and output video resolution parameters.

When user selects this options, it displays scaling menu, which allows user to set either

input resolution or output resolution. When user selects one of the options, it displays

list of pre-defined resolution value. Here, user can select one of the resolutions by giving

input. And by doing so, corresponding menu state takes that input and then invokes either

PYNQ Z1 Video Processing Subsystem Feature Implementation

 Page 51 of 70

input stream configuration function or output stream configuration function. That is,

set_input_parameters() or set_output_parameters() functions. By invoking first

function, it configures TPG parameters and VPSS input stream resolution. Similarly, by

invoking second function, it configures VPSS output stream resolution and clocking wizard

output clock according to selected output resolution. Finally, scaled version of video is

displayed on the monitor.

For better understanding, we can check this example;

If input and output streams are selected to 720p and 1080p respectively, then 720p video

is scaled up to fit 1080p at the output.

If input and output streams are selected to 1024p and 480p respectively, then 1024p

video is scaled down to fit 480p at the output.

For more information about scaling, we can visit VPSS product guide PG231.

Following code snippet shows top level scaling menu operation.

Color Space Converter(CSC)

This option allows user to set color format for input and output video stream amongst

available four color formats, for example, RGB, YUV4:2:0, YUV4:2:2 and YUV4:4:4. User

can select option to set the color format for either input video stream or output video

stream, for which set_input_parameters() or set_output_parameters() functions are

again invoked respectively. By invoking first function, it configures TPG color format and

VPSS input stream color format. Similarly, by invoking second function, it configures VPSS

PYNQ Z1 Video Processing Subsystem Feature Implementation

 Page 52 of 70

output stream color format. Finally, different color format video is displayed on the

monitor.

For better understanding, we can check this example;

If input and output stream color format are selected to RGB and YUV4:2:0 respectively,

then RGB video is converted to YUV4:2:0 format at the output.

If input and output streams are selected to YUV4:4:4 and RGB respectively, then YUV4:4:4

video is converted to RGB format at the output.

For more information about CSC, we can visit VPSS product guide……………………………..

Following code snippet shows top level CSC menu operation.

Frame Rate Converter (FRC)

This option allows user to set frame rate for input and output video. User can select option

to set the frame rate for either input video stream or output video stream, for which

set_input_parameters() or set_output_parameters() functions are again invoked

respectively. By invoking first function, it sets frame rate for particular input stream

resolution currently selected in VPSS. Similarly, by invoking second function, it sets frame

rate for particular output stream resolution currently selected in VPSS. And clocking wizard

is also configured to generate corresponding pixel clock. Finally, output video is displayed

on the monitor.

For better understanding, we can check this example;

If input and output stream color format are selected to 1080p@30Hz and 1080p60Hz

respectively, then 30Hz frame rate video is converted to 60Hz at the output.

PYNQ Z1 Video Processing Subsystem Feature Implementation

 Page 53 of 70

For more information about FRC, we can visit VPSS product guide……………………………..

Following code snippet shows top level FRC menu operation.

NOTE: This project design is confined to support 60Hz output video because of test

monitor compatibility. Therefore, user has to write their own codes to support other

output frame rate.

VPSS Report

This is the final main menu option. This option can be used to debug the VPSS. Besides

this, it also give detailed information of configuration of project design. This menu has

four sub menu options, for example,

• VPSS Input/output Configuration

It shows the current VPSS input output stream configuration.

• VPSS Core Information

It shows the sub-cores that are included in under VPSS topology

• VPSS log

It shows all the VPSS event info and error.

• VPSS Mode Status

PYNQ Z1 Video Processing Subsystem Feature Implementation

 Page 54 of 70

It shows status of scaling, CSC & FRC.

PYNQ Z1 Video Processing Subsystem Feature Implementation

 Page 55 of 70

CHAPTER 3: OUTPUT

After software design is completed, we can now head for implementation of project on PYNQ-

Z1 board. To program the board from computer, we have to set the jumper (JP4) to JTAG mode.

Figure 66. Program jumper setting

Before connecting to computer, we have to check jumper setting (JP5). If we want to power and

program the board by using single mini usb cable, we must change jumper to USB mode. By

then, board is programmed and powered from same computer. We need to power ON the

power, if it is already not done so.

Figure 67. Power jumper setting

After connecting board, we need to prepare software application by building it. If it is successful,

then it can be programmed.

But before launching the application, we can use to Vitis IDE built-in Terminals. We can also use

External Terminals like PuTTY, Tera Term etc…

To add terminal in Vitis IDE, we have to follow steps;

Window > Show View

PYNQ Z1 Video Processing Subsystem Feature Implementation

 Page 56 of 70

This opens show view dialog window, where we have to scroll to find Terminal. Then, we need to

expand it to select Terminal and then Open it.

It then adds terminal at bottom-right corner of IDE. We have to connect it with our board. We

also need to configure the terminal.

By clicking on open a terminal icon, it pops-up Launch Terminal dialog window.

PYNQ Z1 Video Processing Subsystem Feature Implementation

 Page 57 of 70

Here, we have to choose terminal as Serial Terminal from dropdown options. We need to select

the port, where the board is connected. The port is only visible as long as board is connected to

the computer and it is powered ON. Then we need to choose baud rate. Based on the design,

we can choose one of the baud rates from the dropdown options. This project design uses

115200 baud rate.

After this, we let other parameters as they are already. Then, click on OK to complete terminal

connection.

Now, we can launch the application on board by following steps;

Explorer > Application Project > Right Click > Run as > Launch Hardware

Figure 68. Launching software application on hardware

Vitis IDE first loads the bitstream to board.

Figure 69. Loading bitstream

If it is successful, then launches application on board.

PYNQ Z1 Video Processing Subsystem Feature Implementation

 Page 58 of 70

If launching is successful, we might be able to see terminal messages as well as output on the

monitor as following;

Figure 70. Main menu on the terminal

This is what main menu looks like on the terminal. It allows user to select one of these options.

Figure 71. Initial output

This is the output on the monitor, when the project design initially runs with default parameters,

such as,

• Input/output stream (Video Mode): 1920x1080p@60Hz

• Video Pattern : Color bars

• Color format : RGB

• Sampler per Clock : 1

• Frame rate: 60Hz

• Video format: progressive

• Output pixel frequency: 148.5 MHz

PYNQ Z1 Video Processing Subsystem Feature Implementation

 Page 59 of 70

Each individual option related output is discussed below

Video Test Pattern

When user selects Test Pattern Selection option, then following menu is seen on the terminal.

Figure 72. Test pattern selection terminal menu

The following sub-menu is seen when change test pattern option is selection.

Figure 73. List of pattern

This menu has lists of various video test pattern. When option is selected, following output is

seen on the monitor.

PYNQ Z1 Video Processing Subsystem Feature Implementation

 Page 60 of 70

Figure 74. Different TPG pattern selection output

Scaling

When user selects scaling option from main menu, then following submenu is seen

Figure 75. Scale terminal menu

This messages also displays the current scaling status as highlighted by red box in above image.

From this message, user can select to change the resolution of input stream or output stream.

PYNQ Z1 Video Processing Subsystem Feature Implementation

 Page 61 of 70

And following lists of resolution are displayed. Resolution lists are same for input and output

stream.

Figure 76. Resolution list

Followings are scaled outputs are obtained after setting the resolution.

Figure 77. Scaled output from 1080p to 600p

Image represents the output when input stream is at 1920x1080p and output is at 800x600p.

That is, scale down. In other words, 1080p color bar pattern is scaled to fit 600p resolution.

PYNQ Z1 Video Processing Subsystem Feature Implementation

 Page 62 of 70

Figure 78. Scaled output from 480p to 720p

Above images depicts the output when both input stream is at 640x480p and output stream is

set to 1280x720p. That is scale up.

Color Space Converter

When user selects Color Space Converter (CSC) options from the main menu, the following CSC

menu is seen on the terminal.

Figure 79. CSC selection terminal menu

There are also two option to select input stream and output stream color format. In meantime,

this menu also displays the current format status between input and output. This is highlighted

by red box in the following image.

PYNQ Z1 Video Processing Subsystem Feature Implementation

 Page 63 of 70

Figure 80. Current CSC status of VPSS

This time, both streams have same color format, i.e. RGB. This format can be changed by selecting

menu options.

When one of the options is selected, then following color format list menu is displayed. Color

format lists for both input and output stream are same.

Figure 81. Terminal CSC List

When one of the color formats in chosen, then following outputs obtain.

Figure 82. Output obtained after converting YUV420 into RGB

PYNQ Z1 Video Processing Subsystem Feature Implementation

 Page 64 of 70

This is the output that is obtained when input stream with YUV420 color format is converted into

RGB color format at the output.

Figure 83. Output obtained after converting RGB to YUV420

This is the output that is obtained when input stream with RGB color format is converted into

YUV color format at the output.

Figure 84. Output obtained after converting RGB into YUV444

This is the output that is obtained when input stream with RGB color format is converted into

YUV444 color format at the output.

PYNQ Z1 Video Processing Subsystem Feature Implementation

 Page 65 of 70

Frame Rate Converter (FRC)

When FRC option is selected from the main menu, following terminal menu is displayed.

Figure 85. FRC Terminal Menu

The option 1 can be selected to change the input frame rate. On selecting option 1, it displays

lists frame rate for the currently selected input stream resolution.

Figure 86. Frame Rate List

This is the frame rate list supported by currently selected input stream resolution, that is,

1920x1080. Besides this, there are also separate frame rate lists, supported by other resolutions

value. But for now, when one of the value is selected, this frame rate value is converted into

output frame rate i.e. 60Hz by VPSS. The output on the monitor does not change because, all the

rates are converted into 60Hz. Following are some result obtained on the terminal after changing

input frame rate.

PYNQ Z1 Video Processing Subsystem Feature Implementation

 Page 66 of 70

Figure 87. Terminal messages obtained after changing input frame rate at 30Hz, 50Hz & 100Hz respectively

VPSS Report

This is the last menu option of the main menu. It is used to get the VPSS related information. It

is mainly used for VPSS debugging.

When this option is selected, the following submenu options are displayed on the terminal.

Figure 88. VPSS report terminal menu

Any of the options can be selected. But each option gives distinct information about VPSS.

PYNQ Z1 Video Processing Subsystem Feature Implementation

 Page 67 of 70

Figure 89. VPSS i/o stream configuration terminal messages

These messages are displayed when sub menu option 1 is selection. This option display input

output stream configuration of VPSS.

Figure 90. VPSS Core information terminal message

These messages are seen when option 2 is selected. This option displays the cores included for

the particular topology, such as, Full Fledged in VPSS.

PYNQ Z1 Video Processing Subsystem Feature Implementation

 Page 68 of 70

Figure 91. VPSS log

This is displayed when option 3 is selected. These are event log of VPSS.

Figure 92. VPSS Status

This is displayed when option 4 is selected. This gives information about current scaling status,

color format status and frame rate status of VPSS.

PYNQ Z1 Video Processing Subsystem Feature Implementation

 Page 69 of 70

REFERENCES

[1] PYNQ, "PYNQ: PYTHON PRODUCTIVITY," Xilinx, [Online]. Available: http://www.pynq.io/.

[2] L. Swanland, "Python + Zynq = PYNQ : Introducing Our Latest Collaboration!," Digilent,

[Online]. Available: https://blog.digilentinc.com/python-zynq-pynq-introducing-our-

latest-collaboration/.

[3] Xilinx, "Video Processing Subsystem," [Online]. Available:

https://www.xilinx.com/products/intellectual-property/video-processing-subsystem.html.

[4] Xilinx, "Video Test Pattern Generator product guide," xilinx, [Online]. Available:

https://www.xilinx.com/support/documentation/ip_documentation/v_tpg/v8_0/pg103-v-

tpg.pdf.

[5] Xilinx, "Video Processing Subsystem Product Guide," [Online]. Available:

https://www.xilinx.com/support/documentation/ip_documentation/v_proc_ss/v2_0/pg23

1-v-proc-ss.pdf.

[6] xilinx, "Axis subset converter product guide," xilinx, [Online]. Available:

https://www.xilinx.com/support/documentation/ip_documentation/axis_infrastructure_ip

_suite/v1_1/pg085-axi4stream-infrastructure.pdf.

[7] Xilinx, "Clocking Wizard Product Guide," Xilinx, [Online]. Available:

https://www.xilinx.com/support/documentation/ip_documentation/clk_wiz/v6_0/pg065-

clk-wiz.pdf.

[8] xilinx, "video timing controller product guide," xilinx, [Online]. Available:

https://www.xilinx.com/support/documentation/ip_documentation/v_tc/v6_2/pg016_v_tc

.pdf.

